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Quantum gravity & BH

thermodynamics



Looking for a quantum gravity theory

D = 4 metric degrees of freedom = 10 components - 4 diffeos

-4 non-dynamical = 2 d.o.f

• Gravity theory in 4D is not a perturbative renormalizable theory ( [G ] = −2 in

mass units).

• We can interpret thoery of gravity as an Effective field theory:

S =
1

16πG

∫
d4x
√
−g{−2Λ +R+ c1R2 + c2R

µνRµν + c3R
µνρσRµνρσ + . . . }

The theory needs an UV completion

• No local observables ;

• The graviton is not composite (Weinberg-Witten theorem)

• Emergent spacetime . . .
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BH Thermodynamics

• Zero Law: the surface gravity κ is costant over the horizon;

• First law:for any stationary black hole with mass M, angular momentum J and

charge Q, it turns out to be

δM =
κ

8πG
δA+ ΩδJ + φδQ

where Ω is the angular velocity and φ is electrostatic potential.

• Second law: The Area A of the event horizon of a black hole never decreases

δA ≥ 0

• Third law:It is impossible to reduce, by any procedure, the surface gravity κ to

zero in a finite number of steps.

The correspondence between thermodynamic and black hole mechanics is complete if

we identify:

E → M S → A T → κ

• Moreover Bekenstein found:

S = η
A
~G
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Hawking radiation

Thawking =
κ

2π
=

~c3

8πGM
∼ 6× 10−8 M

M�

Can Hawking radiation be observed?

• For stellar mass black hole eight orders of magnitude smaller than cosmic

microwave background;

• More important for primordial black holes;

• Analogue of Hawking radiation in condensed matter system.

The many derivations of Hawking radiation

• Canonical quantization in curved space time (Hawking, 1975);

• Path integral derivation (Hartle and Hawking, 1976);

• KMS condition (Bisognano and Wichmann,1976);

• Gravitational istantons(Gibbons and Hawking,1977);

• Tunneling trough the horizon (T.Damour and R.Ruffini,1976; M.K. Parikh and

F.Wilczek, 2000);
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Black hole entropy

SBH =
A

4~G
SBH ∼ 1090

(
M

106M�

)2

• No hair theorem(s): Stationary, asymptotically, flat black hole solutions to

general relativity coupled to electromagnetism that are nonsingular outside the

event horizon are fully characterized by the parameters of mass, charge and spin.

S = −
∑
n

pn ln pn

Why classical black holes have entropy?

• Problem of universality: A great many different models of black hole

microphysics yeld the same thermodynamical proprieties;

• Loss information paradox: black holes evaporate, emitting Hawking radiation,

which contains less information than the one that was originally in the

spacetime, therefore information is lost.
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AdS/CFT correspondence



Holographic principle

• (’t Hooft and Susskind) A bulk theory with gravity describing a macroscopic

region of space is equivalent to a boundary theory without gravity living on the

boundary of that region;

• Susskind considered an approximately spherical distribution of matter that is not

itself a black hole and that is contained in a closed surface of area A

Let us suppose that the mass is induced to collapse to form a black hole, whose

horizon area turns out to be smaller than A. The black hole entropy is therefore

smaller than A
4

and the generalized second law implies the bound

S ≤
A
4
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AdS/CFT correspondence

• The gauge/gravity correspondence (duality) is an exact relationship between any

theory of quantum gravity in asymptotically AdSd+1 space (the bulk) and an

ordinary CFTd without gravity (the boundary) ;

• Each field φ propagating in a (d+1)-dimensional anti-de Sitter spacetime is

related, through a one to one correspondence, to an operator O in a

d-dimensional conformal field theory defined on the boundary of that space

(GKPW dictionary).

Zgrav [φi0(x); ∂M] =
〈

exp

(
−
∑
i

∫
ddxφi0(x)O i (x)

)〉
CFT on ∂M

This is UV complete!!

• The mass of the bulk scalar is related to the scaling dimension of the CFT

operator

m2 = ∆(d −∆), ∆ =
d

2
+

√
d2

4
+ m2l2

• Thermal states in CFT are dual to black holes in quantum gravity

Z [φ0;M] = Zgrav [φ0, boundary = M]
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Strong/Weak duality

Aside for certain examples, the corrispondence is well defined and useful only in

certain limits. One realization which is understood in great details is:

IIB strings on AdS5 × S5 = Yang-Mills in 4d with N = 4 supersymmetry

The large symmetry group of 5d anti-de Sitter space matches precisely with the group

of conformal symmetries of the N = 4 super Yang-Mills theory

• gravity side:

SIIB ∼
∫ √

g(R+ Lmatter + l4sR4 + . . . )

parameters: ls , lp , lAdS

• CFT side: SU(N) gauge fields + matter fields for supersymmetry.

parameters: gYM , N

λ = g2
YMN

• The mapping

λ ∼
l4AdS
l4s

ld−1
AdS

GN
∼ N2

8



Hamiltonian & symmetries



Asymptotic symmetries

GR is locally diff invariant, but it is not invariant under diff. that reach the boundary:∫
M
δξ(
√
−gL) =

∫
∂M

dAµξµL

Asymptotic Symmetry Group =
symmetries

trivial symmetries

where trivial symmetry is one whose associated vashining conserved charges.

Maxwell theory

S = −
1

4

∫
d4x(FµνF

µν + AµJ
µ
matter )

The action is invariant under trasformations:

δAµ = ∂µΛ(x), δφ = iΛ(x)φ

For Λ = const.

dQ

dt
= 0 Q ∼

∫
Σ
d3x J0

Matter ∼
∫
∂Σ

d2xFtr ASG = U(1)global
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Hamiltonian in GR

In Hamiltonian formalism the global charges appears as canonical generators of the

asymptotic symmetries of the theory. Let us use as canonical variable hij (~x , t)πij (~x , t)

and we parametrize the metric as:

ds2 = −N2dt2 + hij (dx
i + N idt)(dx j + N jdr)

Consider the action

I =
1

16πG

∫ √
−g(R− 2Λ)d4x +

1

8πG

∫ √
±h (K−K0)d3x ,

I =

∫
M
d4x

[
πij ḣij − NH− N iHi

]
−
∫
∂M

d3x
√
σuµTµνξ

µ

where T ij is the boundary (Brown-York) stress tensor :

T ij =
1

8π
(K ij − hijK)− (background) δIon−shell =

1

2

∫
∂M

√
−hT ijδgij

wer can read off the Hamiltonian:

H[ξ] =

∫
Σ
d3x

[
NH+ N iHi

]
−
∫
∂Σ

d2x
√
σuµTµνξ

µ
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Asymptotic symmetries in GR

• The bulk term vanishes on-shell.

• The dynamics leaves ξ unspecified. This corresponds to a choice of time

evolution:

{H[ξ],X} = LξX

• General spacetimes do not have isometries, so no local conserved quantities.

Asymptotic symmetries allow to define global conserved charges.

• In General relativity ASG is generated by the conserved charges.

{H[ξ],H[η]} = H[[ξ, η]] + c(ξ, η)

• In Minkowski spacetime the ASG is Poincaré group.

• ASG leads to surprise. The isometry group of AdSd is SO(D − 1, 2). A natural

guess is that the asymptotic simmetry group is the same. This is not true for

D ≤ 3 ( Brown and Henneaux )
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2D Dilaton gravity



JT model

• In 2D dimensions, the curvature tensor has only one independent component,

since all nonzero component can be obtained by simmetry

Rµνρσ =
1

2
R(gµλgνρ − gµρgνλ) =⇒ Gµν = 0

• For formulating a theory endowed with a not trivial degree of freedom gravity

theory coupled with a scalar:

S =

∫
d2x η(R− 2λ2).

which admits BH solutions:

ds2 = −(λ2x2 − a2)dt2 + (λ2x2 − a2)−1dx2, η = η0λx

• The action can be considered a dimensional reduction of an higher dimensional

model:

ds2
(d+2) = ds2

(2) + η
2
d dΩ2(κ, d)

• Thermodynamics:

S = 2πη0a M =
a2η0λ

2
T =

λa

2π
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Isometries

• AdS2 (a2 = 0) is a maximally symmetric space, it admits, therefore, three Killing

vectors generating the SO(1, 2) ∼ SL(2,R) group of isometries.

χ(1) =
1

λ

∂

∂t

χ(2) = t
∂

∂t
− x

∂

∂x
,

χ(3) = λ(t2 +
1

λ4x2
)
∂

∂t
− 2λtx

∂

∂x
.

• For a2 6= 0 SL(2,R) symmetry is realized in a different way

δη = Lχη = χµ∂µη.

Symmetries of 2D spacetime are broken by the linear dilaton

χµ = F0ε
µν∂νη, SL(2,R)→ T

• This symmetry breaking pattern will gives rise to a central charge!!
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Asymptotic symmetries

• We define asymptotically AdS2 if, for x →∞

gtt = −λ2x2+γtt+o(x−2) gtx (t) =
γtx (t)

λ3x3
+o(x−5) gxx =

1

λ2x2
+
γxx (t)

λ4x4
+o(x−6)

• This asymptotic form is preserved by:

χt = ε(t) +
ε̈(t)

2λ4x2
+
αt(t)

x4
+ o(x−5),

χx = −x ε̇(t) +
αx (t)

x
+ o(x−2)

• The asymptotic behaviour of dilaton compatible with these trasformations is:

η = η0

(
λρ(t)x +

γφφ(t)

2λx

)
+ o(x−3)
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• The boundary fields trasform as:

δγtt = εγ̇tt + 2ε̇γtt − λ−2...
ε − 2λ2αx

δγxx = εγ̇xx + 2ε̇γxx − 4λ2ραx

δγφφ = εγ̇φφ + λ−2ε̈ρ̇+ 2λ2ραx

δρ = ερ̇+ ε̇ρ.

• Using these results one finds:

J(ε) =
η0

λ
ε ¨̄ρ+ εM = εΘtt

• Near the classical solution one finds:

εδωΘtt = ε
(
ωΘ̇tt + 2ω̇Θtt

)
−
η0

λ
ε
...
ω

• This equals the Dirac braket between the charges. Using Fourier series

expansions for ε, Θ and ω one find:

[Lm, Ln] = (m − n)Lm+n +
C

12
m3δm+n

with C = 12η0 (Virasoro algebra)
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Central charge and statistical entropy

• Since the physical states of quantum gravity on AdS2 must form a

representation of this algebra:

quantum gravity on AdS2 is a conformal field theory with central charge C

• The apparence of the central charge is related to a ”soft” breaking of conformal

symmetry by the introduction a macroscopic scale into the system. In other

words it describes the way a specific system reacts to macroscopic length scales

introduced, for instance, by boundary conditions.

< Tcyl.(w) >= −
cπ2

6L2

• Cardy formula

S = 2π

√
cl0

6
, l0 =

M

λ
� 1

Using this formula one can easily reproduce the black hole entropy.
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Boundary theory



Spontaneosly broken symmetry

• AdS2 vacuum in (euclidean) Poincarré coordinates:

ds2 =
dt2 + dz2

z2

we want to cutoff the space along a trajectory (t(u), z(u)):

gboundary =
1

l2
1

l2
=

t′2 + z ′2

z2
→ z = lt′ + o(l3)
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Explicitly broken symmetry

• Introducing a dilaton:

η =
α+ γt + δ(t2 + z2)

z
• The dilaton is diverging near the boundary:

ηb =
ηr (u)

l

α+ γt(u) + δ(t(u)2

t′(u)
= ηr (u)

We can derive an effective action:

I = −
∫

du ηr (u)Sch(t, u) Sch(t, u) = −
t′′

2t′2
+ (

t′′

t′
)2

Pseudo Nambu Goldstone modes

• With this action we can reproduce the entropy:

log Z = −I = 2π2DT D = η̄r
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Thank you!!!
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