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Outline

• The experimental setup and the discovery
• Event horizons and light rings in Schwarzschild
• Black hole perturbations
or How to produce gravitational waves

• Are we listening to black holes?
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A bit of History

1916 Einstein predicts gravitational waves
1936 Einstein contradicts himself: gravitational waves don’t exist

1950s–60s Theoretical arguments about existence of gravitational waves
1960 Weber starts building detectors
1969 Weber announces first detection of gravitational waves Physics Focus 16 (2005) 19

1970s Consensus that gravitational waves exist and doubts on Weber’s findings
1974–79 Hulse-Taylor binary pulsar (Nobel prize in 1993)

1990 Construction of the Laser Interferometer Gravitational-wave Observatory begins
2002–11 Joint observations of LIGO, TAMA300 (Japan), GEO600 (Germany) and Virgo (Italy)

2015 Advanced LIGO starts
2016 LIGO detects gravitational waves caused by the collision of black holes
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http://physics.aps.org/story/v16/st19


LIGO and GW150904



(Advanced) Laser Interferometer Gravitational-wave Observatory

aLIGO consists of two giant laser interferometers, one in Hanford, WA, and one in Livingston, LA.
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(Advanced) Laser Interferometer Gravitational-wave Observatory

• How does it work?
When a gravitational wave passes by, the arms of the interferometer alternately lengthen and
shrink and the laser beams take a different time to travel through the arms.

• How sensitive?
The difference between the two arm lengths is proportional to the gravitational-wave strain.
For what we can detect, we expect the strain to be about 1/10 000th the width of a proton!

• Why two detectors?
To successfully detect a gravitational wave, LIGO needs to combine astounding sensitivity with
an ability to isolate real signals from environmental effects and instrument noise. Only a real
gravitational wave signal would appear in both detectors.
With two or more detectors we can also triangulate the direction on the sky from which a
gravitational wave arrives.
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GW150914

Each signal is analysed very promptly, looking for
evidence of a gravitational-wavelike pattern but
without modeling the precise details of the
waveform. The gravitational-wave strain data are
then compared with an extensive bank of
theoretically predicted waveforms.
GW150914 LIGO/Virgo collab. (2016) has been produced
by the merger of two black holes with masses of
about 36M⊙ and 29M⊙ into a spinning black
hole with mass of about 62M⊙. The coalescence
converted about 3M⊙ into gravitational-wave
energy, emitted in a fraction of a second.
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All the observations are consistent with the predictions of General Relativity.
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http://dx.doi.org/10.1103/PhysRevLett.116.061102


The Schwarzschild Spacetime



The Schwarzschild Spacetime

The gravitational field outside a spherical mass is Schwarzschild (1916)

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
.

The surface r = 2M is an event horizon — the defining property of black holes.
Most of the experimental tests of GR are based on the Schwarzschild geometry for r > 2M: the
precession of planetary orbits, the bending of light, accretion discs around black holes, …
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http://arxiv.org/abs/physics/9905030


Trajectories of Photons and Light Ring

The geodesics in the Schwarzschild geometry, (equatorial plane)(
1− 2M

r

)
ṫ = E,

(
1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1
ṙ2 − r2ϕ̇2 = 0, r2ϕ̇ = L,

can be combined to give the energy and the shape equations,

ṙ2 +
L2

r2

(
1− 2M

r

)
= E2,

d2u
dϕ2 + u = 3Mu2 (u ≡ 1/r).

The only possible radius for a circular photon orbit is r = 3M, the light ring — a boundary within
which photons can be trapped in circular orbits.
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Black Hole Perturbations

or How to produce gravitational waves



Linearized Einstein Equations

The Einstein field equations

Rµν − 1
2Rgµν = 8πTµν ,

can be solved exactly for a very few cases.
Wave-like solutions to the Einstein equations can be found in a spacetime with very modest
curvature,

gµν = g̊µν + hµν , with |hµν | ≪ 1.

The linearized Einstein field equations (in an appropriate gauge) are,

2hµν = −16πTµν .

In vacuum 2hµν = 0, i.e. the metric perturbations propagate as waves distorting the background
spacetime.
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Perturbations of the Schwarzschild Black Hole

Metric perturbations were first consired to analyse the stability of black holes, and then to study
the gravitational field of particles falling into black holes.
The Schwarzschild solution is the only spherically symmetric, asymptotically flat solution of Einstein
equations in vacuum (Birkhoff’s theorem). As a result, perturbations must have complete angular
dependence.
The metric perturbations can be expanded in terms of tensor spherical harmonics that behave
differently under parity transformation, (in the Regge-Wheeler gauge)

hoddµν =


0 0 −h0(t, r) csc θ ∂

∂φ
h0(t, r) sin θ ∂

∂θ

0 0 −h1(t, r) csc θ ∂
∂φ

h1(t, r) sin θ ∂
∂θ

⋆ ⋆ 0 0
⋆ ⋆ 0 0

Yℓm(θ, φ),

hevenµν =


eν(r)H0(t, r) H1(t, r) 0 0

⋆ e−ν(r)H2(t, r) 0 0
0 0 r2K(t, r) 0
0 0 0 r2K(t, r) sin2 θ

Yℓm(θ, φ).
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The Regge-Wheeler and the Zerilli Equations

Let us assume harmonic dependance and consider odd metric perturbations. Regge & Wheeler (1957)

Einstein equations do not depend on m and they can be recasted in a Schrödinger-like wave
equation,

d2ψ

dr2∗
−

[
ω2 −

(
1− 2M

r

)(
ℓ(ℓ+ 1)

r2
− 6M

r3

)]
ψ = 0,

where the “tortoise” coordinate r∗ ≡ r+ 2M log
( r
2M − 1

)
, is particularly suited to study the

propagation of perturbations near the black hole horizon since it is placed at −∞.
The Regge-Wheeler potential has a maximum just outside the event horizon, at r ≈ 3.3M.
Let us now consider even metric perturbations. In this case we obtain the Zerilli equation, Zerilli (1970)

d2ψ

dr2∗
−

[
ω2 −

(
1− 2M

r

) 18M3 + 18M2rΛ + 6Mr2Λ2 + 2r3Λ2(1+ Λ)

r3(3M+ rΛ)2

]
ψ = 0,

where Λ = (ℓ− 1)(ℓ+ 2)/2.
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http://dx.doi.org/10.1103/PhysRev.108.1063
http://dx.doi.org/10.1103/PhysRevLett.24.737


Quasi-Normal Modes

The Regge-Wheeler and Zerilli equations describe the response of the black hole to external
perturbations, i.e. they tell us about the vibrational modes of the spacetime.
The quasi-normal modes (QNM) are complex values of ω for which we have solutions of the
equations such that we have pure outgoing-waves at infinity, and pure ingoing-waves at the event
horizon. Kokkotas & Schmidt (1999); Berti, Cardoso & Starinets (2009)

Some properties of the Schwarzschild QNMs: Chandrasekhar & Detweiler (1975)

• All the QNMs are damped modes, i.e. Schwarzschild is linearly stable against perturbations.
• The damping time depends on the mass, i.e. ωn ∼ 1/M and is shorter for higher modes.
• The QNMs in black holes are isospectral, i.e. even and odd perturbations have the same
complex eigenfrequencies.

For a Kerr black hole, the calculations are way too involved, but the entire QNM spectrum is
characterized only by the black hole mass and angular momentum.
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http://dx.doi.org/10.12942/lrr-1999-2
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1098/rspa.1975.0112


Gravitational Field of a Particle Falling into a Black Hole

For a test particle of mass µp ≪ M and energy E falling into a black hole, there is also a “source
term”. Zerilli (1970) In the Regge-Wheeler gauge,

Sℓ =

4µp

√
ℓ+ 1

2
(
1− 2M

r

)(
2iEΛ

√
E2 − 1+ 2M

r − ω (Λr+ 3M)

)
eiωT(r)

ω
√
E2 − 1+ 2M

r (Λr+ 3M)2
,

where T(r) is the coordinate time, dT
dr = − E

(1− 2M
r )

√
E2−1+ 2M

r

.
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http://dx.doi.org/10.1103/PhysRevD.2.2141


Quadrupolar Gravitational Waves Energy Spectrum and Gravitational Wave Extraction

The energy flux emitted in gravitational waves is

dE
dω =

1
32π

∑
ℓ⩾2

(ℓ+ 2)!
(ℓ− 2)!ω

2 |ψℓ(ω, r → ∞)|2 .

The time-domain wavefunction can be recovered via

Ψℓ(t, r) =
1√
2π

∫
dω e−iωtψℓ(ω, r).
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Are We Listening to Black Holes?



Are We Listening to Black Holes?

The detection of GW150914 and GW151226 enormously
strengthen the evidence for stellar-mass black holes, whose
existence is already supported by various indirect
observations in the electromagnetic band.
But, is there any evidence for horizons?
Electromagnetic observations cannot probe the existence
of event horizons, they may probe only the existence of
light rings. Abramowicz, Kluźniak & Lasota (2002)

The gravitational wave ringdown signal might arguably
provide the only conclusive proof of the existence of an
event horizon in dark, compact objects.
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http://dx.doi.org/10.1051/0004-6361:20021645


Exotic Compact Objects as Black Hole Mimickers

Black hole mimickers include:

• Boson stars
• Wormholes
• Gravastars

These objects and black holes are dark and then indistinguishable to electromagnetic instruments.
Is there any evidence for horizonless compact objects? Do we have solid physical motivations?
Ultra-compact objects are generically unstable. Cardoso et al. (2014)
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http://dx.doi.org/10.1103/PhysRevD.90.044069


How to Discriminate Exotic Compact Objects

It was commonly believed that the ringdown is dominated by the QNMs of the final object.
For black holes, the QNMs are deeply related to the boundary conditions required at the event
horizon, but for a horizonless object, the boundary conditions change completely, and so the QNM
structure. So, is the ringdown waveform dominated by the quasinormal modes?
In principle, the ringdown phase should not depend on the presence of a horizon as long as the
final object has a light ring. Cardoso, EF & Pani (2016)

For a black hole, the ingoing condition at the horizon simply takes the ringdown waves and
‘carries’ them inside the black hole. In this case, the black hole QNMs incidentally describe also
the ringdown phase.
For another horizonless object, its relaxation should consist on the usual light ring ringdown modes
(which are no longer QNMs), followed by the proper modes of vibration of the object itself.
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http://dx.doi.org/10.1103/PhysRevLett.116.171101


Traversable Wormholes: Construction

We study the gravitational radiation emitted by a point particle in radial motion towards a
traversable wormhole. Morris, Thorne & Yurtsever (1988); Visser (1996)

Two copies of the Schwarzschild spacetime with the same mass M,

ds 2 = −Fdt 2 + F−1 dr 2 + r 2 dΩ2, where F = 1− 2M/r ,

glued together at the throat r = r0 > 2M.
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http://dx.doi.org/10.1103/PhysRevLett.61.1446
http://arxiv.org/abs/


Traversable Wormholes: Particle’s Plunge

Consider an infalling particle with mass µp ≪ M and energy E.
In the point-particle limit, the Einstein equations reduce to a pair of Zerilli equations, Zerilli (1970)

d2ψℓ(ω, r)
dr 2∗

+
(
ω2 − Vℓ(r)

)
ψℓ(ω, r) = Sℓ .

The junction conditions for ψℓ at the throat depend on the properties of the matter confined in the
thin shell. Pani et al. (2009) Here we assume that the microscopic properties of the shell are such that
ψℓ and dψℓ/dr∗ are continuous at the throat.
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http://dx.doi.org/10.1103/PhysRevD.2.2141
http://dx.doi.org/10.1103/PhysRevD.80.124047


Traversable Wormholes: Gravitational Potential

Effective ℓ = 2 potential for a static traversable wormhole with r0 = 2.001M and for a black hole

The effective potential is Z2 symmetric and develops another barrier at r∗ < 0.
For any r0 ≲ 3M, wormholes can support long-lived modes trapped between the two potential
wells near the light rings.
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Quasi-Normal Modes of the Wormhole

The QNMs of the wormhole are defined by the eigenvalue problem associated with the Zerilli
equation with Sℓ = 0 supplemented by regularity boundary conditions.

• At the asymptotic boundaries of both universes we require ψℓ ∼ e±iωr∗ .
• At the throat we impose continuity of dψℓ/dr∗, i.e., either dψℓ(0)/dr∗ = 0 or ψℓ(0) = 0.

We find two families of QNMs, ω = ωR + iωI, for different
values of the throat location r0.
In the black hole limit r0 → 2M, the spectrum is dramatically
different from that of Schwarzschild. The QNMs of the
wormhole approach the real axis and become long lived.
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Quadrupolar Gravitational Waves Energy Spectra

The energy flux emitted in gravitational waves is

dE
dω =

1
32π

∑
ℓ⩾2

(ℓ+ 2)!
(ℓ− 2)!ω

2 |ψℓ(ω, r → ∞)|2 .

r0 = 2.1M, E = 1.1 r0 = 2.001M, E = 1.5
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The spectra coincide only at low frequencies, but are generically very different.
In the black hole limit, the long-lived QNMs of the wormhole can be excited and correspond to
narrow, Breit-Wigner resonances in the spectrum. Pons et al. (2002); Berti, Cardoso & Pani (2009)
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Gravitational Wave Extraction

Given the drastically differences between the QNM and energy spectra of a wormhole and those
of a black hole, one might be tempted to expect a completely different ringdown signal.
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The differences in the energy spectra do not leave any trace in the initial ringdown waveform.
The QNMs of the wormhole contain low energy and get excited only at late times.
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Summary

Gravitational wave astronomy has just begun.
A highly counterintuitive phenomenon: the initial ringdown signal chiefly depends on the
properties of the light ring of the final object.
The actual QNMs of the object are excited only at late times and typically do not contain a
significant amount of energy.
If future gravitational waves detections by aLIGO, aVIRGO and KAGRA will be able to extract the
late-time ringdown signal, we could rule out exotic alternatives to black holes and test quantum
effects at the horizon scale. Giddings (2016)

As it stands, the single event GW150914 does not provide the final evidence for horizons, leaves
room for alternative theories of gravity and ECOs, Chirenti & Rezzolla (2016); Yunes, Yagi & Pretorius (2016) but
strongly supports the existence of light rings.
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http://arxiv.org/abs/1602.03622
http://arxiv.org/abs/1602.08759
http://arxiv.org/abs/1603.08955


Grazie!

See you in fall for the next cycle of Colloquia
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