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Introduction

Some history
Why do we need ITUR?
Rényi’s entropy

h2
(AP7)y (AXE)y > 054

H(PD) + H(PP) > —2logc

Quantum-mechanical URs place fundamental limits on the accu-
racy with which one is able to measure values of different physical
quantities. This has profound implications not only on the micro-
scopic but also on the macroscopic level of physical description.

W. Heisenberg, Physics and Beyond, 1971
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Introduction 5 .
Some history

Why do we need ITUR?
Rényi’s entropy

History |

1927 Heisenberg’s intuitive derivation of UR dpxdx ~ h
1927 Kennard considers as ¢s as a standard deviation of s

1928 Dirac uses Hausdorff-Young’s inequality to prove HUR. 6x and §px are
half-widths of wave packet and its Fourier image

1929/30 Rebertson and Schrodinger reinterpret HUR in terms of statistical
ensemble of identically prepared experiments. Both ép and dx are standard
deviations. Schwarz inequality in the proof.

1945 Mandelstam and Tamm derive time-energy UR
1947 Landau derives time-energy UR

1968 Carruthers and Nietto angle-angular momentum UR
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Why do we need ITUR?
Rényi’s entropy

History Il

1969 Hirschman first Shannon’s entr. based UR (weaker than VUR)
1971 Synge’s three-observable UR

1976 Lévy-Leblond improves angle-angular momentum UR

1980 Dodonov derives mixed-states UR

80 — 90’s Most standard HUR’s are re-derived from Cramér-Rao inequality
using Fisher information

1983/84 Deutsch and Bialynicky-Birula derive Shannon-entr.-based UR

80 — 90’s Kraus, Maassen, etc. derive Shannon-entropy-based UR with
sharper bound than Deutsch and B-B

00’s Uffink, Montgomery, Abe, etc. derive other non-Shannonian UR <
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2006/7s Ozawa’s universal error-disturbance relations
2014 Dressel-Nori error-disturbance inequalities

2012 — 15 Violations of Heisenberg’s UR measured by number of groups

LETTERS
PUBLIHED ONLINE 5 JANUARY 2012 | DOE101038/NPHYSZ14

Experimental demonstration of a universally
valid error-disturbance uncertainty relation
in spin measurements

Jacqueline Erhart’, Stephan Sponar', Georg Sulyok', Gerald Badurek', Masanao Ozawa®
and Yuji Hasegawa'*

The uncertiny princple genersky probibits sinulaneous 2 o AY = (VIA'Y) ~ (¥ A", Not tht o posiive dfnte
s of certain pairs of observables and forms the

basis of indeterminacy in quantum mechanics’. Heisenberg’s  if squarcd, s discussed by Schrodinger’. For our experi

original formulation, illustrated by the famous <-ray micro- =

scope, sets a lower bound for the product of the measurement
error and the disturbance?, Later, the uncertainty relation
was reformulated in terms of standard deviations™®, where
the focus was exclusively on the indeterminacy of predic-
tions, il ing devi

been ignored®. A i Robertson’ @) but
uncertainty relation, taking recoil into account, is essential has no immediate implications for limitations on measurements.
for a deeper understanding of the uncertainty principle, as. (
Heisenberg's original relation is valid only under specific

circumstances’. A new error-disturbance relation, derived  other hand, the proof o
using thetheory of geneal quantum measurements, has been  ofan 4 messurement
claimed to be universally valid™ . Here, we report & neutron-  caused by the measure
i of
measurement as well as the disturbance caused on another
spin-component. The results confirm that both emor and dis- Bz A BV ®

range of an experimental parameter. is not straightforward, as Heisenberg's proof” used an unsupported
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2014 Dressel-Nori error-disturbance inequalities
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PHYSICAL REVIEW A $8,022110 2013)
Violation of Heisenberg’s error-disturbance uncertainty relation in neutron-spin measurements

Georg Sulyok." Stephan Sponar. Jacqueline Echart,' Gerald Badurek. Masanao Ozawa.” and Yuji Hasegawa!
Institute of Atomic and Subatomic Physics. Vienna Universiy of Technology, 1020 Vienna, Ausiria
*Graduate School of nformation Science, Nagoya University, Chikusa-ku, Nagoya, Japan
(Recived 3 June 2013: published 14 August 2013

Inits original formulation, Heisent principle dealt with the elationship betw

relaion was derived by Ozawa in 2003, He stra thal Ozawa's prodictions hold for projecive

neutron-spin measurements. The experimental inaccessibility of error and disturbance claimed elsewhere has

been overcome using a tomographic method. By a systematic variation of experimental parameters in the

entire configuration space, the physical behavior of

illustrated comprehensively. The violation of Heiscrby
ddition, our

between error and disturbance is not valid in general,

and disturbance for projective spin-3 measurements is
s original relation, as wel as the validity of Ozawa’s
tat

DOL: 10.1103/PhysRevA 88.022110 PACS number(s): 03.65.Ta. 03.75.Dg. 42.50.Xa, 03.67.—a

1L INTRODUCTION does ot hold generaly. Thus, i argument did no sablish
e he universal validy of . 1),
Lot P, oo by Hetnber 12t 1929, Rohron (1] cxinded Kennnt's rlion,
27 ranks without doubt amon the mostfamous statements ", 1929 Roberson [19] extended Kenrard
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2006/7s Ozawa’s universal error-disturbance relations
2014 Dressel-Nori error-disturbance inequalities

2012 — 15 Violations of Heisenberg’s UR measured by number of groups

5 5 week ending
PRL 109, 100404 (2012) PHYSICAL REVIEW LETTERS 7 SEPTEMBER 212

Violation of Hei rg’s N Disturbat ionship by Weak

Lee A. Rozema, Ardavan Darabi, Dylan H. Mahler, Alex Hayat, Yasaman Soudagar, and Acphraim M. Steinberg

Centre for Quantum Information & Quantum Control and Insitute for Opical Sciences, De
ersity of Toronto, Toronto, Oniario, Canada MSS 147

(Received 4 July 2012; published 6 Sepiember 2012; publisher error comrected 23 October 2012)

ient of Physics, 60 St. George Street,

‘While there is a rigorously proven relaionship about uncertainties intrinsic (o any quantum sysem
often referred to as *“Heisenberg's uncertainty principle,” Heisenberg originally formulated his ideas in
temms of a relationship between the precision of a measurement and the disturbance it must create.
Although this later relationship i not rigorously proven, it is commonly befieved (and taught) as an
‘aspect of the broader uncertinty principle. Here, we experimentally observe a violation of Heisenberg's

measurement.disturbance relationship”, using weak measurements to characterize 4 quantum system
before and afier it interacts with Our. 2010 proposal of
Lund and ed by Ozawa in 2003,
Tis resuls have broad implications for the foundations of quantum mechanics and for practical issues in
quantum measurement

DOI 10.1103PhysRevLen. 109100404 PACS numbers: 03,65, 0367Ac. 42.50Xa

must satisfy €(g)7(p) = h, where h is Planck’s constant.
This idea was at the crux of the Bohr-Einstein debate [9],
and the role of momentum disturbance in destroying
interferer remained a subject of heated discussion
photon is scattered by the electron, the electron undergoes  [10-12). Recently, the study of uncertainty relations in

v&n
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AL 1 =
S MEINULIEIC @2, =l
RE Pg:}RTS

Experimental violation and reformulation
of the Heisenberg's error-disturbance

SUBJECT AREAS:
QUANTUM MECHANICS : | H
oo UNcertainty relafion
QUANTUM INFORMATION So-Young Baek™, Fumihiro Kaneda', Masanao Ozawa? & Keiichi Edamatsu’
QUANTUM OFTICS
"Research Institute of Electical Communication, Tohoku University, Sendai 9808577, Japan, “Graduate School of nformation
Received  Science, Nogoya Univers, Nogeya 4648601, apan.
7 August 2012
Accepied  The uncertainty principle formulated by Heisenberg in 1927 describes a trade-off between the error of a
2July 2013
Published
17 July 2013

and
et model that breaks Hesenbergsrelation thraughout he angs of ouF
and yet validates Ozawa's relation.

Cortespondence and
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Introduction

Why do we need ITUR?

Q: Why do we need information-theoretic UR in the first place?

A: Essence of VUR is to put an upper bound to the degree of concentration
of two (or more) probability distributions < impose a lower bound to the
associated uncertainties. Usual VUR has many limitations™:

@ variance as a measure of concentration is a dubious concept when
PDF contains more than one peak, e.g., PDF of electron in H atom

o Probability density = r2An (12

tainty relations
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Rényi’s entropy

Why do we need ITUR?

Q: Why do we need information-theoretic UR in the first place?

A: Essence of VUR is to put an upper bound to the degree of concentration
of two (or more) probability distributions < impose a lower bound to the
associated uncertainties. Usual VUR has many limitations™:

@ variance as a measure of concentration is a dubious concept when
PDF contains more than one peak, e.g., PDF of electron in H atom

Hydrogen Wave Function
o) -




Introduction

Why do we need ITUR?

Q: Why do we need information-theoretic UR in the first place?

A: Essence of VUR is to put an upper bound to the degree of concentration
of two (or more) probability distributions < impose a lower bound to the
associated uncertainties. Usual VUR has many limitations™:

@ variance as a measure of concentration is a dubious concept when
PDF contains more than one peak, e.g., PDF of Schrédinger’s cat st.

|. Biatynicky-Birula, 1975; D. Deutsch, 1983; H. Maasen, 1988; J. Uffink, 1990
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Why do we need ITUR? Example |

@ When the distribution is multimodal the variance is often non-intuitive quantifier of uncertainty

Example |: consider two states of a particle in one dimension

@ First state describes a particle with a uniform probability density in a box of total length L, i.e.

_ 1/L, inside the box;
¢ = 0, outside the box,.

@ Second state describes a particle localized with equal probability densities in two boxes each of length L/4,

_ 2/L, inside the box;
e = 0, outside the box,.

| 1 I 1 | 1 | v |
State F

State ¢

states F = flat and C = clustered

Q: In which case, F or C, is the uncertainty in the position greater?

A: Intuition = the uncertainty is greater in the case F. In the case C we know more about the position;
the particle is not in the regions Il and Ill. However, Axg = L/~/12 while Axg = \/7/4L/~/12

A new c
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Rényi’s entropy

Why do we need ITUR? Example Il

@ When the distribution is multimodal the variance does not give a sensible measure of uncertainty

Example II: consider a particle in one dimension where the probability density is constant in two regions | and Il
separated by a large distance NL (N is a large number). The region | has the size L(1 — 1/N) and the distant
region |l has the size L/N. Probability density is:

1/L, inregion II;

1/L, inregion /;
0 =
0, otherwise.

L(1-1/N) Distance NL L/N

Example Il: Ax ~ L/+/12+/1 + 12N.

NOTE 1: Ax tends to infinity with N even though the probability of finding the particle in the region | tends to 1

NOTE 2: Problem with the standard deviation It gets very high contributions from distant regions because these
enter with a /arge weight: namely, the distance from the mean value.

A new c
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Why do we need ITUR?

@ variance diverges in many distributions even though such distributions
are sharply peaked — heavy-tail distributions, e.g., Lévy, Cauchy, etc.-

2 =0, ¥=0.5
=1
=2

—, =0, %

— =0

— =2, =1

-4 -2 o0 2 4
X

Cauchy-Lorentz PDF can be freely concentrated into an arbitrarily small region by changing its scale parameter,

while its standard deviation remains very large or even infinite.

It is desirable to quantify the inherent quantum unpredictability also in a
different way, e.g., in terms of various information measures —entropies

«F. Lillo and R.N. Mantegna, Phys. Rev. Lett. 84 (2000).
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A. Rényi L.P. Kadanoff
(1921-1970) (1937 - 2015)

@ for g = 1 Rényi entropy equals Shannon’s entropy
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Why do need ITUR?
Rényi’s entropy

Rényi vs. Shannon — discrete case

Rényi entropy:

A. Rényi L.P. Kadanoff
(1921-1970) (1937 - 2015)

@ for g = 1 Rényi entropy equals Shannon’s entropy
@ is additive, i.e., Iq(.A1 U Ag) = Iq(.A1) + Iq(.A2|.A1)

Petr Jizba A new class of entropy-power-based uncertainty relations
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Rényi vs. Shannon — discrete case

Rényi entropy:

A. Rényi L.P. Kadanoff
(1921-1970) (1937 - 2015)

@ for g = 1 Rényi entropy equals Shannon’s entropy
@ is additive, i.e., Iq(.A1 U Ag) = Iq(.A1) + Iq(.A2|.A1)
@ maxpZy(P) = P={1/n,...,1/n}
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Rényi’s entropy

Rényi vs. Shannon — discrete case

Rényi entropy:

A. Rényi L.P. Kadanoff
(1921-1970) (1937 - 2015)

@ for g = 1 Rényi entropy equals Shannon’s entropy
@ s additive, i.e., Zg(A1 U A2) = Zg( A1) + Zg(Az| A1)
@ maxpZy(P) = P={1/n,...,1/n}

@ second law of “thermodynamics”: Zq(B|.A) < Zg(B)
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Rényi vs. Shannon — discrete case

Rényi entropy:

A. Rényi L.P. Kadanoff

(1921-1970) (1937 - 2015)
@ for g = 1 Rényi entropy equals Shannon’s entropy

@ is additive, i.e., Zg( Ay U A2) = Zg(A1) + Zg(Az2| A1)

@ maxpZy(P) = P={1/n,...,1/n}

@ second law of “thermodynamics”: Zq(B|.A) < Zg(B)

@ it has operational meaning via coding theorem (Campbell, 1965)

A. Rényi, 1970, 1976; L.P. Kadanoff et all, Phys. Rev. Let. 55 (1985) 2798

Petr Jizba A new class of entropy-power-based uncertainty relations
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Entropy power UR

Entropy power

Entropy power — Shannon’s case

Let X is a random vector in R? with PDF F. The differential (or continuous)
entropy H(X) of X is defined as

H(X) = —/RDJ-'(X) log, F(x) dx

NOTE: Discrete version is nothing but Shannon’s entropy which represents
an average number of binary questions needed to reveal the value of X.

C.E. Shannon (1916 - 2001)

* C.E. Shannon 1948, A. Rényi, 1970, 1976

Petr Jizba A new class of entropy-power-based uncertainty relations
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Entropy power — Shannon’s case

Entropy power N(X) of X is a unique number such that’

H(X) = H(Xe)

where X is a Gaussian random vector with zero mean and variance equal to
N(X). So, equivalently

H(X) = H (\/N(X) : zG)

with Zg representing a Gaussian random vector with zero mean and unit
covariance matrix. The solution is* (for Shannon measured in nats)

2

N(X) = %eexp <5H(X))

* C. Shannon 1948, M.H.M. Costa 1985

Petr Jizba A new class of entropy-power-based uncertainty relations
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Entropy power — Rényi’s case

Differential Rényi entropy Z,(.X') of X has the form (p € R):

1
Ip(X) = ——=lo </dx]—"’x>
P( ) (1 7p) 92 y ( )
NOTE: One can check that for p — 1 one has Z(X) — H(X).

Definition

The p-th Rényi entropy power N,(.X) is the solution of the equation

Ip(X) = Ip (\/W'ZG)

With Z5 being a Gaussian random vector with zero mean and unit
covariance matrix.

Petr Jizba A new class of entropy-power-based uncertainty relations
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Entropy power — Rényi’s case

Theorem

Let X be a random vector in R® with PDF F € (P(R®), where p > 1. The p-th
Rényi entropy power of X of the form

1 2
Np(X) = EP L exp (EIP(]:)>

(with p" and p being Hélder conjugates) is the only admissible class of
solutions in the former equation.

(Proof is based on the scaling property Zp(aX') = Zp(X) + Dlog |a| )
NOTE: In the limit p — 1, one has Ny(X) — N(X).
NOTE: There are two immediate important observations:

No(oxd) = o®  and  Np(X§) = [K[V° (X% ~N(0,K))

Petr Jizba A new class of entropy-power-based uncertainty relations
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Entropy power uncertainty relations — B-B theorem

Theorem (Beckner—Babenko theorem)

Let fAx) = 1 (x) = / ™Y f(y) dy
RD
then for p € [1,2] one has
N |pD 2|1 P . ,
Il < 1(0)P72[77 Ifle  with 1/p+1/p" =1

NOTE: Inequality is saturated only for Gaussian PDF’s.”
Define the square-root density likelihood: |f(y)| = v/ F(y) then BBI implies

1/t 1/r
([ rewneay) ([ 0w dy) < 2+ 0P
(r=p/2—1andt=p'/2—1=t=—r/(2r+1))

* E.H. Lieb, 1990

Petr Jizba
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Entropy power uncertainty relations

When the negative logarithm is applied on both sides then
@) ) 1 1
Tist(F)+ T (F) > . log[2(1 +r)] + n log[2(1 + t)]

This is equivalent to

1
1672

Nipt(FENi (FD) = Noa(X)Ngja(V) >

NOTE 1: When both X and ) represent random Gaussian vectors then

1
1672

NOTE 2: When X ia random vector with the covariant matrix (Kx); then

Ka|/PIKy |0 =
Y

N(X) < [KxVP < 0%

Petr Jizba A new class of entropy-power-based uncertainty relations
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Enters QM

Consider state vectors that are Fourier transform duals, i.e.

=

=
X

=z
|

lp x/h
- ‘/RD (p) (27Tﬁ)D/2 ’

~ —ip-x/h dx
= /RDe P w(x)i(th)D/Z

Comparing with entropy power UR’s we have

pox
A
|

& (x/v2rh) = (2rh)®*p(x),
O(p/V2rh) = (2rh)"/*{(p)

Consequently we can write the associated RE-based UR’s as

2
Nase ([0 PN (1017) >

Petr Jizba A new class of entropy-power-based uncertainty relations
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Reconstruction theorem

NOTE: In the case that the PDFs are Gaussian, the whole family of REPURs
reduces to the single familiar VUR

2
2 2 R
O'XO'p—Z

Q: In what sense is the entire tower of REPURs more general than a single
Robertson—-Schrédinger VUR?

AN

In order to uniquely reconstruct the underlying PDF for observed QM system
one needs to know all associated entropy powers *.

NOTE: In cases when the underlying distribution has all cumulants finite <
Hamburger—Stilties moment problem

* PJ., J. Dunningham and J. Joo, AOP 2014; PRE 2016

Petr Jizba A new class of entropy-power-based uncertainty relations



Entropy power UR
Py Pe Entropy power

Reconstruction theorem

RE can be written as

Tp(X) = log, E [2(1*P)fx]

o
(1-p)
Here ix (x) = —log, F(x) is the information in x.

= RE can be viewed as a reparametrized version of the cumulant generating function
of the variable iy (X) = cumulant expansion
p n
(|092 e)

kn(X) = rn(ix) is the n-th cumulant of ix (X) = reconstruction theorem =

Nn(X)
|

oo
PTi_p(X) = logyey_ "
n=1 :

@ Gaussian PDF is the only PDF that saturates all REPURs.

@ When Ny /o(FM)N (F@) = 12 /4 or Ny jo(F@)Neo (FV) = 12 /4 then the
respective peak-tail parts are Gaussian.

@ The closer is F to Gaussian the smaller neighbourhood of p = 1
is needed in Np.

A new class of entropy-power-based uncertainty relations



Applications in QM

Simple examples | — heavy tailed distributions

@ Consider the wave function

000 = [\ e = 90) = e B katalpl/) (oot € 2w)

@ The corresponding PDFs read

1 27
FOW = e T = K6l

F® 7@

o,

_ y=1f4 —Gauchy
=12
= y=1
_ y=2

—Normal




Applications in QM

Simple examples | — heavy tailed distributions

@ Consider the wave function

000 = [\ e = 90) = e 2 kaipl) (both € 2(w)

@ The corresponding PDFs read

®x) = K§(~lpl/h)

h

F
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Applications in QM

Simple examples | — heavy tailed distributions

@ Consider the wave function

000 = 2\ o = 90 = e[ Eketalpl/n) (ootn € ()

@ The corresponding PDFs read

Ol Y p— O(p) = 21K (pl/m)

72+ (x —m)?’

@ Particularly interesting REPURs are

h? I
N (FOWN(FP) = 0.00527°7% > Zo Ny o (FD)Noo (FP) < T

cf. with ((Ax)?),, = oo and ((Ap)?)y = h2r/16c2

= Schrodinger—Robertson’s VUR is completely uninformative

Petr Jizba A new class of entropy-power-based uncertainty relations



Applications in QM

Simple examples Il — cat states

Consider a superposition of a vacuum |0) and a squeezed vacuum |z) — cat state

Spectroscopy with cat states of laser light is used in material science (The Cundiff group and Brad Baxley, 2014)

of entropy-pow sed uncertainty



Applications in QM

Simple examples Il — cat states

Consider a superposition of a vacuum |0) and a squeezed vacuum |z) , i.e.

) = N(10) +|2¢))

where

> mv/(@2m) | (tanh¢)™
l2c) = > (D" {\/m} em

is a superposition of even number states |2m) with the squeezing parameter ¢. =

m=0

wX2 we24x2 2
F@(x) = N3, /= |exp T + e%/2exp T
2
2 —2p2
M(p) = A2 _P —¢/2 _¢
F(p) N — exp( 2hw>+e exp< o >‘

= Nip(FO)Noo(FD) = Noo(FEN, fo(F) = -

Petr Jizba A new class of entropy-power-based uncertainty relations



Applications in QM

Simple examples Il — cat states

Q: What is so special about the extremal values Z;,, and Zoo

AN NN

Non-linear nature of RE emphasizes the more probable parts of the PDF
(typically the middle parts) for p > 1 while for p < 1 the less probable parts
of the PDF (typically the tails) are accentuated. In other words, Z ,» mainly
carries information on the rare events while T, on the common events.

REPUR is saturated at extremal p’s be- X 08
cause PDFs are Gaussian both at wings z
and at peaks p = x = 0. REPURs with =z
different indices do not saturate bound.

Petr Jizba A new class of entropy-power-based uncertainty relations



Applications in QM

Simple examples Il — cat states

For, some further reading on (Schrédinger) cat states in condensed matter
physics, see, e.g.

Quantum Field Theoryandits
Macroscopic Manifestations




Applications in QM

Little speculation at the end ...

NOTE: There are information-theoretic derivations of black-hole evap. formula *.
The idea is to combine Landauer principle 4+ Heisenberg’s UR

Mass temperature relation for (large) BHs

1 .
m= 13 with © = T/T,, m= M/M,

f\

W. Heisenberg R. Landauer
(1901-1976) (1927 - 1999)

Q: What happens with the BH evaporation formula when Heisenberg’'s UR is
augmented with other (higher order) REPURs?

A: Either IT derivations are hoax, or the BH radiation spectrum gets more texture than
the simple Planck’s BB formula suggests.

*L. Susskind, JHEP 2005; R.J. Adler, GRG 2001; PJ., H. Kleinert and F. Scardigli, PRD 2008 - - -

Petr Jizba A new class of entropy-power-based uncertainty relations



Summary

Summary

@ We have generalized Shannon’s ITUR to account for generalized
information measures of Rényi. We have seen that in QM systems
REPUR’s provide more structural information on quantum states
(related PDF) than conventional VUR’s.

@ Our method holds future promise precisely because a large part of the
structure of QM is concerned with information.

of entropy-power



Summary

Summary

@ We have generalized Shannon’s ITUR to account for generalized
information measures of Rényi. We have seen that in QM systems
REPUR’s provide more structural information on quantum states
(related PDF) than conventional VUR’s.

@ Our method holds future promise precisely because a large part of the
structure of QM is concerned with information.

@ Entropy-power inequality is instrumental in treatments of QM systems
with heavy tailed or multi-peak distributions (Bright—-Wigner systems,
Schrédinger cat states, etc.)”

*PJ, J.Dunningham and J.Joo, AOP 2015; PRE 2016
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Summary

Epilogue

“Its all quite elementary, my dear Watson”

- Holmes, A Study in Scarlet
Arthur C. Doyle

Petr Jizba A new class of entropy-power-based uncertainty relations



Summary

Existent ITUR’s and QM

@ Landau—Pollack ineq. = Shannon’s ITUR for discrete PDF’s

S(P®)+S(PM) > —2log, ¢

Petr Jizba A new class of entropy-power-based uncertainty relations
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Existent ITUR’s and QM

@ Landau—Pollack ineq. = Shannon’s ITUR for discrete PDF’s
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Summary

Existent ITUR’s and QM

@ Landau—Pollack ineq. = Shannon’s ITUR for discrete PDF’s
S(P®) +8(PM) > ~2log, ¢
@ Riesz—Thorin ineq. = Rényi’'s ITUR for discrete PDF’s
Ty t(P®) + Ty (PW) > —2logy ¢ [-]

@ Beckner—Babenko ineq. = Rényi’s ITUR for continuous PDF’s

Np/Z(X)Nq/Z(y) > 167'('2 ) [\4]
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Summary

Existent ITUR’s and QM

@ Landau—Pollack ineq. = Shannon’s ITUR for discrete PDF’s
S(P®) +8(PM) > ~2log, ¢
@ Riesz—Thorin ineq. = Rényi’'s ITUR for discrete PDF’s
Ty t(P®) + Ty (PW) > —2logy ¢ [-]

@ Beckner—Babenko ineq. = Rényi’s ITUR for continuous PDF’s

Nps2(X)Ng2(Y) > * 2]

@ right-hand sides are independent of the sate |¢)

@ often more stringent bound on concentrations of PDF’s than
VUR’s
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Summary

Bekenstein and Landauer

m — © relation for (micro) BH sensitively depends on the form of E — x
UP = one can easily arrive at non-trivial phenom. consequences

Consider ensemble of unpolarized photons that deliver to MB one
single bit of information per particle

In order to ensure that each photon delivers
only one bit of information its position uncer-
tainty must be of order Rs = AX. ~ u2Rs.
An extra bit of information added to the micro
black hole will increase its energy at least by
amount AE, so that

he €2
AXAE. ~ — |1 - ——(AE.)?
e 2 2h2c2( )
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Summary

Bekenstein and Landauer

With Planck’s energy

_ hc 19
& = 21, ~ 0.61-10""GeV

GUP can be cast to

he  @l,E.

AXe = 3E ~ 8e,

(e = alp)

Using the fact that, Rs = ¢, m, where m = M/M,, we can write
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Summary

Landauer principle

Landauer principle:

When a single bit of information is erased the amount of energy dissipated
into environment is at least kg T In2 where T is the temperature of erasing
environment.

Liberated energy per bit of lost information cannot be grater than E. of the
carrier photon

= E. ~ kgT.
Defining Tp = 2&,/ks =~ 10% Kand © = T/T,, we can rewrite m — © formula
as
om = _1__2nc%0
T 270 g

where ¢ = a/(2v/2r) and i = m, in order to agree with Hawking’s formula in
continuum limit.
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