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〈∆p2
i 〉ψ〈∆x2

j 〉ψ ≥ δij
~2

4

H(P(1)) + H(P(2)) ≥ −2 log c

Quantum-mechanical URs place fundamental limits on the accu-
racy with which one is able to measure values of different physical
quantities. This has profound implications not only on the micro-
scopic but also on the macroscopic level of physical description.

W. Heisenberg, Physics and Beyond, 1971
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History I

1927 Heisenberg’s intuitive derivation of UR δpx δx ≈ ~

1927 Kennard considers as δs as a standard deviation of s

1928 Dirac uses Hausdorff-Young’s inequality to prove HUR. δx and δpx are
half-widths of wave packet and its Fourier image

1929/30 Rebertson and Schrödinger reinterpret HUR in terms of statistical
ensemble of identically prepared experiments. Both δp and δx are standard
deviations. Schwarz inequality in the proof.

1945 Mandelstam and Tamm derive time-energy UR

1947 Landau derives time-energy UR

1968 Carruthers and Nietto angle-angular momentum UR
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History II

1969 Hirschman first Shannon’s entr. based UR (weaker than VUR)

1971 Synge’s three-observable UR

1976 Lévy-Leblond improves angle-angular momentum UR

1980 Dodonov derives mixed-states UR

80− 90′s Most standard HUR’s are re-derived from Cramér-Rao inequality
using Fisher information

1983/84 Deutsch and Białynicky-Birula derive Shannon-entr.-based UR

80− 90′s Kraus, Maassen, etc. derive Shannon-entropy-based UR with
sharper bound than Deutsch and B-B

00′s Uffink, Montgomery, Abe, etc. derive other non-Shannonian UR
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History III

2006/7s Ozawa’s universal error-disturbance relations

2014 Dressel–Nori error-disturbance inequalities

2012− 15 Violations of Heisenberg’s UR measured by number of groups
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Why do we need ITUR?

Q: Why do we need information-theoretic UR in the first place?

A: Essence of VUR is to put an upper bound to the degree of concentration
of two (or more) probability distributions⇔ impose a lower bound to the
associated uncertainties. Usual VUR has many limitations∗:

variance as a measure of concentration is a dubious concept when
PDF contains more than one peak, e.g., PDF of electron in H atom

I. Białynicky-Birula, 1975; D. Deutsch, 1983; H. Maasen, 1988; J. Uffink, 1990
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Why do we need ITUR?

Q: Why do we need information-theoretic UR in the first place?

A: Essence of VUR is to put an upper bound to the degree of concentration
of two (or more) probability distributions⇔ impose a lower bound to the
associated uncertainties. Usual VUR has many limitations∗:

variance as a measure of concentration is a dubious concept when
PDF contains more than one peak, e.g., PDF of Schrödinger’s cat st.
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Why do we need ITUR? Example I
When the distribution is multimodal the variance is often non-intuitive quantifier of uncertainty

Example I: consider two states of a particle in one dimension

First state describes a particle with a uniform probability density in a box of total length L, i.e.

% =

{
1/L, inside the box;
0, outside the box,.

Second state describes a particle localized with equal probability densities in two boxes each of length L/4,

% =

{
2/L, inside the box;
0, outside the box,.

states F = flat and C = clustered

Q: In which case, F or C, is the uncertainty in the position greater?

A: Intuition⇒ the uncertainty is greater in the case F. In the case C we know more about the position;
the particle is not in the regions II and III. However, ∆xF = L/

√
12 while ∆xC =

√
7/4L/

√
12
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Why do we need ITUR? Example II

When the distribution is multimodal the variance does not give a sensible measure of uncertainty

Example II: consider a particle in one dimension where the probability density is constant in two regions I and II
separated by a large distance NL (N is a large number). The region I has the size L(1− 1/N) and the distant
region II has the size L/N. Probability density is:

% =

 1/L, in region I;
1/L, in region II;
0, otherwise.

Example II: ∆x ∼ L/
√

12
√

1 + 12N.

NOTE 1: ∆x tends to infinity with N even though the probability of finding the particle in the region I tends to 1

NOTE 2: Problem with the standard deviation It gets very high contributions from distant regions because these
enter with a large weight: namely, the distance from the mean value.
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Why do we need ITUR?

variance diverges in many distributions even though such distributions
are sharply peaked — heavy-tail distributions, e.g., Lévy, Cauchy, etc.∗

Cauchy–Lorentz PDF can be freely concentrated into an arbitrarily small region by changing its scale parameter,

while its standard deviation remains very large or even infinite.

It is desirable to quantify the inherent quantum unpredictability also in a
different way, e.g., in terms of various information measures —entropies

∗F. Lillo and R.N. Mantegna, Phys. Rev. Lett. 84 (2000).
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Rényi vs. Shannon — discrete case

Rényi entropy:

Iq(P) =
1

1− q
log2

(∑
x

pq(x)

)
, q > 0

A. Rényi L.P. Kadanoff
(1921-1970) (1937 - 2015)

for q = 1 Rényi entropy equals Shannon’s entropy

is additive, i.e., Iq(A1 ∪ A2) = Iq(A1) + Iq(A2|A1)

maxPIq(P) ⇒ P = {1/n, . . . , 1/n}
second law of “thermodynamics”: Iq(B|A) ≤ Iq(B)

it has operational meaning via coding theorem (Campbell, 1965)

A. Rényi, 1970, 1976; L.P. Kadanoff et all, Phys. Rev. Let. 55 (1985) 2798
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Entropy power — Shannon’s case

Let X is a random vector in RD with PDF F . The differential (or continuous)
entropy H(X ) of X is defined as

H(X ) = −
∫
RD
F(x) log2 F(x) dx

NOTE: Discrete version is nothing but Shannon’s entropy which represents
an average number of binary questions needed to reveal the value of X .

C.E. Shannon (1916 - 2001)

NOTE: StrictlyH(X ) is not a proper entropy but rather an information gain∗.

∗
C.E. Shannon 1948, A. Rényi, 1970, 1976

Petr Jizba A new class of entropy-power-based uncertainty relations
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Entropy power — Shannon’s case

Entropy power N(X ) of X is a unique number such that∗

H (X ) = H (XG)

where XG is a Gaussian random vector with zero mean and variance equal to
N(X ). So, equivalently

H (X ) = H
(√

N(X ) · ZG

)
with ZG representing a Gaussian random vector with zero mean and unit
covariance matrix. The solution is∗ (for Shannon measured in nats)

N(X ) =
1

2πe
exp

(
2
D
H(X )

)

∗ C. Shannon 1948, M.H.M. Costa 1985
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Entropy power — Rényi’s case

Differential Rényi entropy Ip(X ) of X has the form (p ∈ R):

Ip(X ) =
1

(1− p)
log2

(∫
M

dx Fp(x)

)
NOTE: One can check that for p → 1 one has Ip(X )→ H(X ).

Definition

The p-th Rényi entropy power Np(X ) is the solution of the equation

Ip (X ) = Ip

(√
Np(X ) · ZG

)
With ZG being a Gaussian random vector with zero mean and unit
covariance matrix.

Petr Jizba A new class of entropy-power-based uncertainty relations
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Entropy power — Rényi’s case

Theorem

Let X be a random vector in RD with PDF F ∈ `p(RD), where p > 1. The p-th
Rényi entropy power of X of the form

Np(X ) =
1

2π
p−p′/p exp

(
2
D
Ip(F)

)
(with p′ and p being Hölder conjugates) is the only admissible class of
solutions in the former equation.

(Proof is based on the scaling property Ip(aX ) = Ip(X ) + D log |a| )

NOTE: In the limit p → 1+ one has Np(X )→ N(X ).

NOTE: There are two immediate important observations:

Np(σX 1I
G) = σ2 and Np(XK

G ) = |K|1/D (XK
G ∼ N (0,K))

Petr Jizba A new class of entropy-power-based uncertainty relations
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Entropy power uncertainty relations — B-B theorem

Theorem (Beckner–Babenko theorem)

Let f (2)(x) ≡ f̂ (1)(x) =

∫
RD

e2πix.y f (1)(y) dy

then for p ∈ [1, 2] one has

||̂f ||p′ ≤
|pD/2|1/p

|(p′)D/2|1/p′ ||f ||p with 1/p + 1/p′ = 1

NOTE: Inequality is saturated only for Gaussian PDF’s.∗

Define the square-root density likelihood: |f (y)| =
√
F(y) then BBI implies(∫

RD
[F (2)(y)](1+t) dy

)1/t (∫
RD

[F (1)(y)](1+r) dy
)1/r

≤ [2(1 + t)]D |t/r |D/2r

(r = p/2− 1 and t = p′/2− 1⇒ t = −r/(2r + 1))

∗ E.H. Lieb, 1990
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Entropy power uncertainty relations

When the negative logarithm is applied on both sides then

I1+t (F (2)) + I1+r (F (1)) ≥ 1
r

log[2(1 + r)] +
1
t

log[2(1 + t)]

This is equivalent to

N1+t (F (2))N1+r (F (1)) = Np/2(X )Nq/2(Y) ≥ 1
16π2

NOTE 1: When both X and Y represent random Gaussian vectors then

|KX |1/D|KY |1/D =
1

16π2

NOTE 2: When X ia random vector with the covariant matrix (KX )ij then

N(X ) ≤ |KX |1/D ≤ σ2
X

Petr Jizba A new class of entropy-power-based uncertainty relations
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Enters QM

Consider state vectors that are Fourier transform duals, i.e.

ψ(x) =

∫
RD

eip·x/~ ψ̂(p)
dp

(2π~)D/2 ,

ψ̂(p) =

∫
RD

e−ip·x/~ψ(x)
dx

(2π~)D/2

Comparing with entropy power UR’s we have

f (2)(x/
√

2π~) = (2π~)D/4ψ(x) ,

f (1)(p/
√

2π~) = (2π~)D/4ψ̂(p)

Consequently we can write the associated RE-based UR’s as

N1+t (|ψ|2)N1+r (|ψ̂|2) ≥ ~2

4

Petr Jizba A new class of entropy-power-based uncertainty relations
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Reconstruction theorem

NOTE: In the case that the PDFs are Gaussian, the whole family of REPURs
reduces to the single familiar VUR

σ2
xσ

2
p =

~2

4

Q: In what sense is the entire tower of REPURs more general than a single
Robertson–Schrödinger VUR?

A:↘↘↘

Theorem

In order to uniquely reconstruct the underlying PDF for observed QM system
one needs to know all associated entropy powers ∗.

NOTE: In cases when the underlying distribution has all cumulants finite⇔
Hamburger–Stiltjes moment problem

∗ PJ., J. Dunningham and J. Joo, AOP 2014; PRE 2016
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Reconstruction theorem

RE can be written as

Ip(X ) =
1

(1− p)
log2 E

[
2(1−p)iX

]
Here iX (x) ≡ − log2 F(x) is the information in x .

⇒ RE can be viewed as a reparametrized version of the cumulant generating function
of the variable iX (X )⇒ cumulant expansion

pI1−p(X ) = log2 e
∞∑

n=1

κn(X )

n!

(
p

log2 e

)n

κn(X ) ≡ κn(iX ) is the n-th cumulant of iX (X )⇒ reconstruction theorem⇒

Gaussian PDF is the only PDF that saturates all REPURs.

When N1/2(F (1))N∞(F (2)) = ~2/4 or N1/2(F (2))N∞(F (1)) = ~2/4 then the
respective peak-tail parts are Gaussian.

The closer is F to Gaussian the smaller neighbourhood of p = 1
is needed in Np .

Petr Jizba A new class of entropy-power-based uncertainty relations
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Simple examples I — heavy tailed distributions
Consider the wave function

ψ(x) =

√
γ

π

√
1

γ2 + (x −m)2
⇒ ψ̂(p) = e−iγp/~

√
2γ
π2~

K0(γ|p|/~) (both ∈ `2(R))

The corresponding PDFs read

F (2)(x) =
γ

π

1
γ2 + (x −m)2

, F (1)(p) =
2γ
π2~

K 2
0 (γ|p|/~)

F(2)F(2)
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Consider the wave function

ψ(x) =

√
γ

π

√
1

γ2 + (x −m)2
⇒ ψ̂(p) = e−iγp/~

√
2γ
π2~
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γ

π

1
γ2 + (x −m)2

, F (1)(p) =
2γ
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K 2
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Simple examples I — heavy tailed distributions

Consider the wave function

ψ(x) =

√
γ

π

√
1

γ2 + (x −m)2
⇒ ψ̂(p) = e−iγp/~

√
2γ
π2~

K0(γ|p|/~) (both ∈ `2(R))

The corresponding PDFs read

F (2)(x) =
γ

π

1
γ2 + (x −m)2

, F (1)(p) =
2γ
π2~

K 2
0 (γ|p|/~)

Particularly interesting REPURs are

N1(F (1))N1(F (2)) = 0.0052~2π4 >
~2

4
, N1/2(F (1))N∞(F (2))

!
=

~2

4

cf. with 〈(∆x)2〉ψ =∞ and 〈(∆p)2〉ψ = ~2π/16c2

⇒ Schrödinger–Robertson’s VUR is completely uninformative
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Simple examples II — cat states

Consider a superposition of a vacuum |0〉 and a squeezed vacuum |z〉 – cat state

Spectroscopy with cat states of laser light is used in material science (The Cundiff group and Brad Baxley, 2014)
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Simple examples II — cat states

Consider a superposition of a vacuum |0〉 and a squeezed vacuum |z〉 , i.e.

|ψ〉 = N
(
|0〉+ |zζ〉

)
where

|zζ〉 =
∞∑

m=0

(−1)m
√

(2m)!

2mm!

[
(tanh ζ)m√

cosh ζ

]
|2m〉

is a superposition of even number states |2m〉 with the squeezing parameter ζ. ⇒

F (2)(x) = N 2
√

ω

π~

∣∣∣∣∣exp

(
−
ωx2

2~

)
+ eζ/2 exp

(
−
ωe2ζx2

2~

)∣∣∣∣∣
2

F (1)(p) = N 2 1
√
π~ω

∣∣∣∣∣exp

(
−

p2

2~ω

)
+ e−ζ/2 exp

(
−

e−2ζp2

2~ω

)∣∣∣∣∣
2

⇒ N1/2(F (2))N∞(F (1)) = N∞(F (2))N1/2(F (1)) =
~2

4
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Simple examples II — cat states

Q: What is so special about the extremal values I1/2 and I∞

A:↘↘↘

Theorem

Non-linear nature of RE emphasizes the more probable parts of the PDF
(typically the middle parts) for p > 1 while for p < 1 the less probable parts
of the PDF (typically the tails) are accentuated. In other words, I1/2 mainly
carries information on the rare events while I∞ on the common events.

REPUR is saturated at extremal p’s be-
cause PDFs are Gaussian both at wings
and at peaks p = x = 0. REPURs with
different indices do not saturate bound.
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Simple examples II — cat states

For, some further reading on (Schrödinger) cat states in condensed matter
physics, see, e.g.

Petr Jizba A new class of entropy-power-based uncertainty relations



Introduction
Entropy power UR

Applications in QM
Summary

Little speculation at the end ...

NOTE: There are information-theoretic derivations of black-hole evap. formula ∗.
The idea is to combine Landauer principle + Heisenberg’s UR

Mass temperature relation for (large) BHs

m =
1

4πΘ
with Θ = T/Tp, m = M/Mp

W. Heisenberg R. Landauer
(1901-1976) (1927 - 1999)

Q: What happens with the BH evaporation formula when Heisenberg’s UR is
augmented with other (higher order) REPURs?

A: Either IT derivations are hoax, or the BH radiation spectrum gets more texture than
the simple Planck’s BB formula suggests.

∗L. Susskind, JHEP 2005; R.J. Adler, GRG 2001; PJ., H. Kleinert and F. Scardigli, PRD 2008 · · ·
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Summary

We have generalized Shannon’s ITUR to account for generalized
information measures of Rényi. We have seen that in QM systems
REPUR’s provide more structural information on quantum states
(related PDF) than conventional VUR’s.

Our method holds future promise precisely because a large part of the
structure of QM is concerned with information.
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Summary

We have generalized Shannon’s ITUR to account for generalized
information measures of Rényi. We have seen that in QM systems
REPUR’s provide more structural information on quantum states
(related PDF) than conventional VUR’s.

Our method holds future promise precisely because a large part of the
structure of QM is concerned with information.

Entropy-power inequality is instrumental in treatments of QM systems
with heavy tailed or multi-peak distributions (Bright–Wigner systems,
Schrödinger cat states, etc.)∗

∗PJ, J.Dunningham and J.Joo, AOP 2015; PRE 2016
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Epilogue

“Its all quite elementary, my dear Watson”

- Holmes, A Study in Scarlet
Arthur C. Doyle
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Existent ITUR’s and QM

Landau–Pollack ineq. ⇒ Shannon’s ITUR for discrete PDF’s

S(P(2)) + S(P(1)) ≥ −2 log2 c

Riesz–Thorin ineq. ⇒ Rényi’s ITUR for discrete PDF’s

I1+t (P(2)) + I1+r (P(1)) ≥ −2 log2 c * [^]

Beckner–Babenko ineq. ⇒ Rényi’s ITUR for continuous PDF’s

Np/2(X )Nq/2(Y) ≥ 1
16π2 * [^]

Moral

right-hand sides are independent of the sate |ψ〉
often more stringent bound on concentrations of PDF’s than
VUR’s
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Bekenstein and Landauer

m−Θ relation for (micro) BH sensitively depends on the form of E − x
UP⇒ one can easily arrive at non-trivial phenom. consequences

Consider ensemble of unpolarized photons that deliver to MB one
single bit of information per particle

In order to ensure that each photon delivers
only one bit of information its position uncer-
tainty must be of order RS ⇒ ∆Xε ' µ2RS.
An extra bit of information added to the micro
black hole will increase its energy at least by
amount ∆Eε so that

∆Xε∆Eε '
~c
2

[
1− ε2

2~2c2 (∆Eε)2
]
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Bekenstein and Landauer

With Planck’s energy

Ep =
~c
2`p

≈ 0.61 · 1019 GeV

GUP can be cast to

∆Xε '
~c
2Eε
−

a2`pEε
8Ep

(ε = a`p)

Using the fact that, RS = `p m, where m = M/Mp, we can write

2mµ '
Ep

Eε
− a2

8
Eε
Ep
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Landauer principle

Landauer principle:

When a single bit of information is erased the amount of energy dissipated
into environment is at least kBT ln 2 where T is the temperature of erasing
environment.

Liberated energy per bit of lost information cannot be grater than Eε of the
carrier photon

⇒ Eε ' kBT .

Defining Tp = 2Ep/kB ≈ 1032 K and Θ = T/Tp, we can rewrite m −Θ formula
as

2m =
1

2πΘ
− 2πζ2Θ

where ζ = a/(2
√

2π) and µ = π, in order to agree with Hawking’s formula in
continuum limit.
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