

Dark matter at small scales: a general approach

Riccardo Murgia (SISSA, Trieste)

in collaboration with:

Matteo Viel (SISSA, Trieste) Aurel Schneider (ETH, Zurich) Alexander Merle (MPP, Munich) Maximilian Totzauer (MPP, Munich)

HEP - Colloquium (Universita' di Cagliari) March 7th, 2017 new, general approach

Outline

- ΛCDM small-scale "crisis"
 - Baryon physics VS "non-cold" dark matter
 - Thermal warm dark matter: the standard approach
- A new, general approach
 - Method and parametrisation
 - Connection with particle physics models
- Constraints from structure formation data
 - Milky Way satellite counts
 - Lyman- α forest data
- What next

Credits: ESO

 \Rightarrow present Universe mainly composed by a cosmological constant (Λ) and by cold dark matter (CDM) $\Rightarrow \Lambda$ CDM model

Overview

Cosmic microwave background (CMB) and large scale structure (LSS) data \Rightarrow \Rightarrow present Universe mainly composed by a cosmological constant (Λ) and by cold dark matter (CDM) $\Rightarrow \Lambda$ CDM model

However, ACDM model shows some limits at sub-galaxy scales:

- Missing satellite problem Cosmological N-body simulations predict too many substructures around the Milky Way (MW) with respect to the observed number of MW satellites
- Cusp-core problem Cosmological N-body simulations predict too much dark matter (DM) in the innermost regions of galaxies
- *Too-big-to-fail* problem The dynamical properties of massive MW satellites are not reproduced in cosmological simulations

This small-scale "crisis" could be solved either by baryon physics, still not perfectly understood and implemented in cosmological simulations, or by modifying the nature of DM

Models with suppressed matter power spectra: "non-cold" DM

 $\mathsf{CDM} \Longleftrightarrow \mathsf{velocity} \text{ dispersion so small that the corresponding free-streaming length} \\ \text{ is negligible for cosmological structure formation} \\$

"non-cold" DM \Leftrightarrow suppression of the matter power spectrum P(k) on scales smaller than their free-streaming lenght, which is NON-negligible for structure formation ($m \sim \text{keV} \Rightarrow \lambda_{\text{fs}} \sim \text{Mpc}$)

This phenomenon is described by the so-called transfer function T(k):

$$T^2(k) = \left[rac{P(k)_{
m noncold}}{P(k)_{
m ACDM}}
ight]$$

i.e. the square root of the ratio of the power spectrum in the presence of "non-cold" DM with respect to that in the presence of CDM only

Models with suppressed matter power spectra: "non-cold" DM

CDM \iff velocity dispersion so small that the corresponding free-streaming length is negligible for cosmological structure formation

"non-cold" DM \Leftrightarrow suppression of the matter power spectrum P(k) on scales smaller than their free-streaming lenght, which is NON-negligible for structure formation ($m \sim \text{keV} \Rightarrow \lambda_{\text{fs}} \sim \text{Mpc}$)

This phenomenon is described by the so-called transfer function T(k):

$$T^2(k) = \left[rac{P(k)_{
m noncold}}{P(k)_{
m ACDM}}
ight]$$

i.e. the square root of the ratio of the power spectrum in the presence of "non-cold" DM with respect to that in the presence of CDM only

DIFFERENT "NON-COLD" SCENARIOS

DIFFERENT SHAPES OF THE POWER SUPPRESSION (i.e. of T(k))

Thermal warm dark matter (WDM): the standard approach

Thermal WDM \iff DM candidates with a Fermi-Dirac momentum distribution $\downarrow \downarrow$ Very specific shape of the power suppression (i.e. of the transfer function T(k))

The transfer function is well described by:

Viel et al. (2005)

Most of the astrophysical constraints obtained so far, refer to thermal WDM. Nonetheless, most of the viable DM candidates do not have a thermal momentum distribution \implies the corresponding transfer functions may be non-trivially shallower!

Standard approach

New general approach

$$T(k) = [1 + (\alpha k)^{2\nu}]^{-5/\nu} \quad \Rightarrow \quad T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$$

Standard approach

New general approach

$$T(k) = [1 + (\alpha k)^{2\nu}]^{-5/\nu} \quad \Rightarrow$$

$$T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$$

Standard approachNew general approach $T(k) = [1 + (\alpha k)^{2\nu}]^{-5/\nu} \Rightarrow$ $T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$ $T^2(k) = 0.5$ $T^2(k) = 0.5$ $(1,2)^{1/2\nu} = ((0.5)^{-\nu/10} - 1)^{1/2\nu})\alpha^{-1}$ $(1,2)^{1/2\nu} = ((0.5)^{1/2\gamma} - 1)^{1/\beta})\alpha^{-1}$

 \Rightarrow

Standard approach $T(k) = [1 + (\alpha k)^{2\nu}]^{-5/\nu}$ $T^2(k) = 0.5$ $(1 + (\alpha k)^{2\nu})^{-5/\nu}$ $k_{1/2} = ((0.5)^{-\nu/10} - 1)^{1/2\nu})\alpha^{-1}$

- one-to-one correspondence $\alpha \leftrightarrow m_{\text{WDM}} \leftrightarrow k_{1/2}$

$$\begin{array}{l} m'_{\rm WDM} = 2 \ {\rm keV} \ \longleftrightarrow \ k'_{1/2} = 14.323 \ {\rm h/Mpc} \\ \\ m''_{\rm WDM} = 3 \ {\rm keV} \ \longleftrightarrow \ k''_{1/2} = 22.463 \ {\rm h/Mpc} \\ \\ m''_{\rm WDM} = 4 \ {\rm keV} \ \longleftrightarrow \ k''_{1/2} = 30.914 \ {\rm h/Mpc} \end{array}$$

New general approach $T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$

$$T^2(k) = 0.5$$
 $k_{1/2} = ((0.5)^{1/2\gamma} - 1)^{1/\beta}) \alpha^{-1}$

- constraints on $m_{\rm WDM}$ (or $k_{1/2}$) are mapped into 3D surfaces in the $\{\alpha, \beta, \gamma\}$ -space

The position of $k_{1/2}$ is set by α , while β and γ are responsible of the slope of T(k) before and after $k_{1/2}$, respectively. β must be positive in order to have meaningful transfer functions ($\beta < 0$ gives a T(k) that differs from 1 at large scales). The larger is β , the flatter is T(k) before $k_{1/2}$. The larger is the absolute value of γ , the sharper is the cut-off.

Connection with particle physics models (I)

Being able to reproduce a large variety of shapes in the suppression of the matter power spectrum, our general parametrisation accurately describes the most viable non-thermal DM scenarios, such as sterile neutrinos, mixed cold+warm models, fuzzy DM

Connection with particle physics models (II)

Being able to reproduce a large variety of shapes in the suppression of the matter power spectrum, our general parametrisation accurately describes the most viable non-thermal DM scenarios, such as sterile neutrinos, mixed cold+warm models, fuzzy DM

Constraints from MW satellite counts

Any "non-cold" DM model must predict a number of substructures within the MW virial radius not smaller than the actual number of MW satellites that we observe, i.e. $N_{\rm sub} < N_{\rm obs} \simeq 60$ $(M_{\rm MW} = 1.7 \cdot 10^{12} M_{\rm sun})$

"Conservative" case (95% C.L. limit)

"Non-conservative" case (95% C.L. limit)

 $N_{\rm sat}=63$

 $\alpha < 0.067 \text{ Mpc}/h$ (95% C.L.)

 $\alpha \leq 0.061 \ \mathrm{Mpc}/h$ (95% C.L.)

Constraints from Lyman- α forest data - Overview

Lyman- α forest \equiv Lyman- α absorption produced by intergalactic neutral hydrogen in the spectra of distant quasars (thus a probe of the matter power spectrum on scales 0.5 h/Mpc < k < 50 h/Mpc)

Constraints from Lyman- α forest data - Method

- Flux power spectrum, the physical observable in Lyman- α forest experiments:

$$P_{\rm F}(k) = b^2(k) P_{\rm 1D}(k)$$

hydrodynamical simulations \Rightarrow $P_{\rm F}(k)$ \Rightarrow comprehensive data analysis

- The bias $b^2(k)$ differs very little between ACDM and our "non-cold" models, thus:

$$r(k) = rac{P_{
m 1D}^{
m noncold}(k)}{P_{
m 1D}^{
m \Lambda CDM}(k)} pprox rac{P_{
m F}^{
m noncold}(k)}{P_{
m F}^{
m \Lambda CDM}(k)}$$

- Estimator of the suppression of the power spectrum, with respect to ΛCDM model:

$$\delta A = rac{A_{\Lambda ext{CDM}} - A}{A_{\Lambda ext{CDM}}}$$
 with $A = \int_{k_{\min}}^{k_{\max}} r(k) dk$

- A model is excluded (at 95% C.L.) if it is characterised by a larger power suppression with respect to the most updated constraints on thermal WDM candidates (at 95% C.L.) obtained from comprehensive Lyman- α analyses, i.e. if:

$$\delta A > \delta A_{\rm REF}$$

Constraints from Lyman- α forest data - Results

The most stringent constraints on thermal WDM masses from a full statistical analysis of Lyman- α forest data have been recently obtained by using the MIKE/HIRES+XQ-100 dataset (0.5 h/Mpc < k < 20 h/Mpc) [Irsic et al. (2017)]

 $\alpha \leq 0.058 \text{ Mpc}/h$ (95% C.L.)

 $\alpha < 0.044 \text{ Mpc}/h$ (95% C.L.)

Summarizing

The fitting formula reproduces the true results to a very high degree!

	α	β	γ	$k_{1/2} \; [h/{ m Mpc}]$	$N_{ m sub}^{ m fit}$ $(N_{ m sub}^{ m true})$ [%]	Agree?	$\delta A_{\rm fit} \ (\delta A_{\rm true}) \ [\%]$	Agree?
	0.025	2.3	-2.6	17.276	38 (39) [-2.6%]	\checkmark	0.555 (0.571) [-2.8%]	\checkmark
RP	0.071	2.3	-1.0	9.828	15 (14) [+7.1%]	\checkmark	0.743 (0.754) [-1.5%]	\checkmark
neutrinos	0.038	2.3	-4.4	8.604	5 (5) [±0.0%]	 ✓ 	0.799 (0.810) [-1.4%]	\checkmark
	0.035	2.1	-1.5	15.073	35~(37)~[-5.4%]	 ✓ 	0.599~(0.613)~[-2.3%]	\checkmark
Neutrinos	0.016	2.6	-8.1	19.012	38 (42) [-9.5%]	\checkmark	$0.521 \ (0.535) \ [-2.6\%]$	\checkmark
from	0.011	2.7	-8.5	28.647	91 (97) [-6.2%]		0.339(0.360)[-5.8%]	\checkmark
particle	0.019	2.5	-6.9	16.478	27~(28)~[-3.6%]		$0.582 \ (0.576) \ [+1.0\%]$	 ✓
decay	0.011	2.7	-9.8	26.31	79 (87) [-9.2%]	√	0.375 (0.390) [-3.8%]	×
	0.16	3.2	-0.4	6.743	9 (9) [±0.0%]	\checkmark	0.823 (0.834) [-1.3%]	\checkmark
Mixed	0.20	3.7	-0.18	7.931	28 (27) [+3.7%]		0.738~(0.752)~[-1.9%]	\checkmark
models	0.21	3.7	-0.1	11.36	60 (62) [-3.2%]		0.596~(0.610)~[-2.3%]	\checkmark
	0.21	3.4	-0.053	33.251	110 (114) [-3.5%]	√	0.365 (0.377) [-3.2%]	 ✓
	0.054	5.4	-2.3	13.116	8 (9) [-11.1%]	\checkmark	$0.691 \ (0.708) \ [-2.4\%]$	\checkmark
Fuzzy	0.040	5.4	-2.1	18.106	21~(23)~[-8.7%]		0.543~(0.565)~[-3.9%]	 ✓
DM	0.030	5.5	-1.9	25.016	56~(60)~[-6.7%]		0.376~(0.399)~[-5.8%]	×
	0.022	5.6	-1.7	34.590	121 (126) [-4.0%]	√	0.228 (0.250) [-8.8%]	 ✓
	0.0072	1.1	-9.9	7.274	18 (19) [-5.3%]	\checkmark	$0.780 \ (0.788) \ [-1.0\%]$	\checkmark
ETHOS	0.013	2.1	-9.3	16.880	36~(39)~[-7.7%]		0.568~(0.581)~[-2.2%]	\checkmark
models	0.014	2.9	-10.0	21.584	50~(53)~[-5.7%]	 ✓ 	0.463 (0.477) [-2.9%]	\checkmark
	0.016	3.4	-9.3	23.045	53 (56) [-5.4%]	 ✓ 	0.430 (0.439) [-2.1%]	\checkmark

Riccardo Murgia

What next

- We have introduced a new analytical fitting formula for the transfer function, which is able to reproduce a large variety of shapes in the suppression of the matter power spectrum.
- We have shown that it covers the parameter space of the most viable DM candidates, such as sterile neutrinos (whether resonantly produced or from scalar decays), mixed cold+warm models, fuzzy dark matter.
- We have presented the first, preliminary, astrophysical constraints on its free parameters by using two key observables: the number of MW satellites and the Lyman- α forest.
- What now:
 - A full statistical analysis of Lyman- α forest data, by performing 55 hydrodynamical simulations in order to extract the flux power spectra for our "non-cold" scenarios and determine more accurate limits on $\{\alpha, \beta, \gamma\}$.
 - A weak lensing data analysis, which will provide another independent observable for constraining the parameter space.

Thanks for the attention!

Gratzias meda po s'attentzioni!

What next

Results from N-body simulations

Non-linear power spectra and halo mass functions extracted from 55 DM-only simulations with 512³ particles in a 20 Mpc/h box, each of them corresponding to a different { α, β, γ }--combination, i.e. a different "non-cold" scenario

Riccardo Murgia

Dark Matter at small scales: a general approach