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Symmetries

• a continuous symmetry (isometry) of the spacetime metric gab
is encapsulated in a Killing vector field ξa,

£ξgab = ∇aξb +∇bξa = 0

• for example,

2-dim Euclid ∂x , ∂y and x∂y − y∂x
(1 + 1)-dim Minkowski ∂t , ∂x and x∂t + t∂x

Kerr black hole ∂t and ∂ϕ
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Symmetry inheritance

• Suppose that some ma�er/gauge field ψa...
b... is present in the

spacetime, solution to a system of gravitational-ma�er/gauge
field equations.

. . . a natural question occurs :

£ξgab = 0 ⇒ £ξψa...
b... = 0 ?

If the answer is yes, then we say that

the field ψa...
b... inherits the symmetries of the metric gab
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? fields of various spin
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? various gravitational theories

? di�erent spacetime dimensions
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Desiderata

£ξψa...
b... =

some zeros and
well-defined exceptions

+ concrete examples

s = 0 | 1/2 | 1 | · · ·

D
=

2|3|4|5|···
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? leave aside the related mathematical problem of collineations

£ξgab = 0 vs £ξRabcd = 0 vs £ξRab = 0 vs £ξR = 0 vs . . .

Katzin, Levine and Davis: J.Math.Phys. 10 (1969) 617
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By the end of the Golden era
of GR people began to won-
der what are the symmetry
inheritance properties of the
various physical fields.

A thorough search was con-
ducted . . .
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Strategies

• short-sighted: do the analysis for a concrete EOM, concrete
isometry and in adopted coordinates

• . . . a bit be�er: do the analysis for a general isometry, but
concrete gravitational EOM, using some peculiar features of
the particular field equations

Can we be even more general?
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A general strategy

• Gravitational field equation

Eab = 8πTab

• For any Killing vector field ξa,

£ξRabcd = 0 , £ξεab... = 0 , £ξ∇a = ∇a £ξ

• Thus, £ξEab = 0 and the problem is reduced to

£ξTab = 0
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Electromagnetic Field



EM Symm.Inh. in a Nutshell

(1 + 1) £ξFab = 0

(1 + 2) £ξFab = 0 CDPS ’16

(1 + 3) £ξFab = f ∗F ab MW ’75 / WY ’76

D ≥ 5 £ξFab =�?



A warm up: (1+1)-dim EM field

Fab = f εab

0 = d F 3

0 = d ∗F = −d f ⇒ f = const.

£ξFab = (£ξf ) εab + f (£ξεab) = 0
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Classical result: (1+3)-dim EM field

• first results via Rainich-Misner-Wheeler formalism
[Woolley 1973; Michalski and Wainwright 1975]

• generalization via basis of vectors
[Wainwright and Yaremovicz 1976]

• simplified proof via spinors [Tod 2007]

FABA′B′ = φAB εA′B′ + φA′B′ εAB , TABA′B′ =
1

2π
φAB φA′B′

• “master equation” £ξTABA′B′ = 0 implies £ξφAB = iaφAB for
some real function a and

£ξFab = f ∗F ab



Classical result: (1+3)-dim EM field

• first results via Rainich-Misner-Wheeler formalism
[Woolley 1973; Michalski and Wainwright 1975]

• generalization via basis of vectors
[Wainwright and Yaremovicz 1976]

• simplified proof via spinors [Tod 2007]

FABA′B′ = φAB εA′B′ + φA′B′ εAB , TABA′B′ =
1

2π
φAB φA′B′

• “master equation” £ξTABA′B′ = 0 implies £ξφAB = iaφAB for
some real function a and

£ξFab = f ∗F ab



Classical result: (1+3)-dim EM field

• first results via Rainich-Misner-Wheeler formalism
[Woolley 1973; Michalski and Wainwright 1975]

• generalization via basis of vectors
[Wainwright and Yaremovicz 1976]

• simplified proof via spinors [Tod 2007]

FABA′B′ = φAB εA′B′ + φA′B′ εAB , TABA′B′ =
1

2π
φAB φA′B′

• “master equation” £ξTABA′B′ = 0 implies £ξφAB = iaφAB for
some real function a and

£ξFab = f ∗F ab



Classical result: (1+3)-dim EM field

• first results via Rainich-Misner-Wheeler formalism
[Woolley 1973; Michalski and Wainwright 1975]

• generalization via basis of vectors
[Wainwright and Yaremovicz 1976]

• simplified proof via spinors [Tod 2007]

FABA′B′ = φAB εA′B′ + φA′B′ εAB , TABA′B′ =
1

2π
φAB φA′B′

• “master equation” £ξTABA′B′ = 0 implies £ξφAB = iaφAB for
some real function a and

£ξFab = f ∗F ab



Classical result: (1+3)-dim EM field

• first results via Rainich-Misner-Wheeler formalism
[Woolley 1973; Michalski and Wainwright 1975]

• generalization via basis of vectors
[Wainwright and Yaremovicz 1976]

• simplified proof via spinors [Tod 2007]

FABA′B′ = φAB εA′B′ + φA′B′ εAB , TABA′B′ =
1

2π
φAB φA′B′

• “master equation” £ξTABA′B′ = 0 implies £ξφAB = iaφAB for
some real function a and

£ξFab = f ∗F ab



• f is constant if Fab is non-null

(we say that Fab is null if Fab F ab = Fab ∗F ab = 0)

• further constraints in the presence of the black hole

? an example of symmetry noninheriting EM field
[Tariq and Tupper 1975; Michalski and Wainwright 1975]

ds2 =
1

(2r)2 (dr2 + dz2) + r2dϕ2 − (dt − 2z dϕ)2

F = −
√

8
(cosα

r
dr ∧ (dt − 2z dϕ) + sinα dz ∧ dϕ

)
α = −2 ln r + α0

ξ = r
∂

∂r
+ z

∂

∂z
− ϕ ∂

∂ϕ
, £ξF = −2 ∗F
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A recent result: (1+2)-dim EM field
[M. Cvitan, P. Dominis Prester and I.Sm.: CQG 33 (2016) 077001]

• introduce auxiliary “electric” and “magnetic” fields

N = ξaξa , Ea = ξbFab , B = ξa ∗F a

• the key observation

8πTabξaξb = EaEa + B2 Ea £ξEa + B £ξB = 0

4π ∗ (ξ ∧ T (ξ))a = −BEa B £ξEa + (£ξB)Ea = 0

£ξFab = 0
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Fermions



Spin-1/2 fields

• C.A. Kolassis for the Einstein-Weyl EOM

J.Math.Phys. 23 (9) 1982
Phys.Le�. 95 A, 1983

(a) if `a = νAνA
′

is collinear with one of the principal null
directions of the Weyl tensor

£ξνA = is νA

with real constant s

(b) . . . otherwise
£ξνA = f νA
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Scalar Fields



Real scalar field

• minimally coupled, canonical
[Hoenselaers 1978; I.Sm. 2015]

Tab = (∇aφ)(∇bφ) + (X − V (φ))gab , X ≡ −1
2

(∇cφ)(∇cφ)

⇒ 0 = £ξV (φ) = V ′(φ) £ξφ

V ′(φ) 6= 0 £ξφ = 0

V ′(φ) = 0 £ξφ = a = const.

and if ξa has compact orbits then a = 0.
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• an example of time dependent real scalar field in a stationary
spacetime: M. Wyman, Phys. Rev. D 24 (1981) 839

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θ dϕ2)

φ(t) = γ t , γ = const.

• two solutions: a simpler one with eν = 8πγ2r2 and eλ = 2, and
the second one in a form a Taylor series.
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• “k-essence” theories
a generic model for the inflationary evolution

Tab = p,X (∇aφ)(∇bφ) + p gab , p = p(φ,X)

• lemma [I.Sm. 2015] £ξp = £ξ(Xp,X ) = 0

Xp,X = 0 ⇒ £ξ£ξφ = 0 along the orbit (for admissible Tab)

Xp,X 6= 0 ⇒ £ξφ is a solution to

p,φ(£ξφ)2 + 2Xp,X £ξ£ξφ = 0

which is either identically zero or doesn’t have any zeros along
the orbit of ξa
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Addendum: Ideal fluid
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Tab = (ρ+ p) uaub + p gab

£ξTab = 0 ⇒
£ξρ = £ξp = 0 = £ξua
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Complex scalar field

• energy-momentum tensor

Tab = ∇(aφ∇b)φ∗ −
1
2

(
∇cφ∇cφ∗ + V (φ∗φ)

)
gab

• e.g. in polar form φ = Aeiα :

Tab = ∇aA∇bA + A2∇aα∇bα +
T + V (A2)

D − 2
gab
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• subcase #1: symmetry inheriting amplitude, £ξA = 0

→ £ξα is a constant !

• subcase #2: symmetry inheriting phase, £ξα = 0,

(£ξA)2 +
N

D − 2
V (A2) = λ

? for V = µ2A2, the only symmetry noninheriting amplitude A
which is bounded or periodic along the orbits of ξa is

A ∼ sin(
√
κ(x − x0))

but N = const. > 0 and ξa is hypersurface orthogonal
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Black Hole Hair



What is black hole hair?

• the term was coined by J.A. Wheeler and R. Ru�ini, Introducing
the black hole, Physics Today 24 (1971) 30

• roughly, a broad definition:

any non-gravitational field in a black hole spacetime

• more refined definition:

any non-gravitational field in a black hole spacetime
contributing to the conserved “charges” associated to the black

hole, apart from the total mass M, the angular momentum J,
the electric charge Q and the magnetic charge P

(see also: primary/secondary hair distinction)
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• Herdeiro and Radu, PRL 112 (2014) 221101

numerical stationary axially symmetric solution of the
Einstein-Klein-Gordon EOM, with the complex scalar field

φ = A(r, θ) ei(mϕ−ωt) with ω = ΩHm

• Are there any other hairy black hole solutions based on
symmetry noninheritance?
What are the constraints on the existence of the sni scalar
black hole hair?
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• on any Killing horizon H[ξ] we have R(ξ, ξ) = 0

• thus, for the Einstein-KG, T (ξ, ξ) = 0 on H[ξ]

→ implications [I.Sm. 2015]

? real canonical scalar field, £ξφ = 0 (no sni BH hair!)

? complex scalar field with symmetry inheriting amplitude:
a constraint for H[χ] with χa = ka + ΩHma

£kα + ΩH £mα = 0

? complex scalar field with symmetry inheriting phase:
no sni BH hair (via Vishveshwara-Carter tm)
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[I.Sm. arXiv:1609.04013]

• idea: use the Frobenius’ theorem (di�. geom.)

? integrable i� involute, [X(i),X(j)]a ∈ ∆

? orthogonally-transitive i� X (1) ∧ . . . ∧ X (n) ∧ dX (i) = 0
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• circular → Ricci circular,
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• the class of gravitational tensors Eab such that

ξ(1) ∧ . . . ∧ ξ(n) ∧ E(ξ(i)) = 0

. . . ⇒ T (χ, χ) = 0 on H[χ]
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Voids in the table

• non-minimally coupled real scalar fields

[I.Sm. 2015]→ conformal symmetry inheritance, £ξgab = ψgab

• complex scalar field

symmetry inheriting phase with general potential V = V (A2),

the field with sni both A and α ;

• Weyl fermions with the general gravitational EOM;

massive, Dirac fermions

• EM field for D ≥ 5
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Symmetry inheritance spli�ing

• What if we have two or more ma�er fields in the spacetime?

• For example, Tab = T (1)
ab + T (2)

ab ; under which conditions
£ξTab = 0 can be split into

£ξT
(1)
ab = 0 = £ξT

(2)
ab ?

• Wainwright and Yaremovicz [Gen.Rel.Grav. 7 (1976) 345–359
and 595–608] treat the EM field + charged ideal fluid
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• the definition of the approximate symmetries brings in certain
ambiguities . . .

? conformal Killing vector field, £ξgab = ψgab

? Matzner J.Math.Phys. 9 (1968) 1657, ∇b∇(aξb) + λξa = 0;

→ Krisch and Glass arXiv:1508.04614

• we need a systematic approach . . .
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Thank you for your a�ention!


