Symmetry inheritance, black holes and no-hair theorems

Ivica Smolić

University of Zagreb

Symmetries

Symmetries

- a continuous symmetry (isometry) of the spacetime metric gab is encapsulated in a Killing vector field ξ^{a},

$$
£_{\xi} g_{a b}=\nabla_{a} \xi_{b}+\nabla_{b} \xi_{a}=0
$$

Symmetries

- a continuous symmetry (isometry) of the spacetime metric $g_{a b}$ is encapsulated in a Killing vector field ξ^{a},

$$
£_{\xi} g_{a b}=\nabla_{a} \xi_{b}+\nabla_{b} \xi_{a}=0
$$

- for example,

2-dim Euclid $\partial_{x}, \partial_{y}$ and $x \partial_{y}-y \partial_{x}$
$(1+1)$-dim Minkowski $\partial_{t}, \partial_{x}$ and $x \partial_{t}+t \partial_{x}$
Kerr black hole ∂_{t} and ∂_{φ}

Symmetry inheritance

Symmetry inheritance

- Suppose that some matter/gauge field $\psi^{a \ldots . .}$ b... is present in the spacetime, solution to a system of gravitational-matter/gauge field equations.

Symmetry inheritance

- Suppose that some matter/gauge field $\psi^{a_{\text {... }}}$ b... is present in the spacetime, solution to a system of gravitational-matter/gauge field equations.
...a natural question occurs :

$$
£_{\xi} g_{a b}=0 \quad \Rightarrow \quad £_{\xi} \psi^{a \ldots}{ }_{b \ldots}=0 ?
$$

Symmetry inheritance

- Suppose that some matter/gauge field $\psi^{a_{\text {... }}}$ b... is present in the spacetime, solution to a system of gravitational-matter/gauge field equations.
...a natural question occurs :

$$
£_{\xi} g_{a b}=0 \quad \Rightarrow \quad £_{\xi} \psi_{b \ldots}^{a \ldots}=0 ?
$$

If the answer is yes, then we say that the field $\psi_{b}^{a \ldots \ldots}$ inherits the symmetries of the metric $g_{a b}$

Why bother?

math. physics

classifications \&
classifications \&
a quest for the
uniqueness thms black hole hair

phenomenology

Symmetry inheritance for ...

* fields of various spin

Symmetry inheritance for ...

* fields of various spin
\star various types of couplings

Symmetry inheritance for ...

* fields of various spin
\star various types of couplings
\star various gravitational theories

Symmetry inheritance for ...

* fields of various spin
\star various types of couplings
^ various gravitational theories
\star different spacetime dimensions

Desiderata

	$s=0\|1 / 2\| 1 \mid$
O	$£_{\xi} \psi^{a \ldots \ldots}{ }_{b \ldots}=$ some zeros and well-defined exceptions + concrete examples
$\frac{\frac{N}{\omega}}{\frac{A}{N}}$	

Plan

Plan

overview	novel results	open questions
	1501.04967	
$70 s \rightarrow 00 s$	1508.03343	$?$
	1609.04013	

* leave aside the related mathematical problem of collineations

$$
£_{\xi} g_{a b}=0 \text { vs } £_{\xi} R_{a b c d}=0 \text { vs } £_{\xi} R_{a b}=0 \text { vs } £_{\xi} R=0 \text { vs } \ldots
$$

* leave aside the related mathematical problem of collineations

$$
£_{\xi} g_{a b}=0 \text { vs } £_{\xi} R_{a b c d}=0 \text { vs } £_{\xi} R_{a b}=0 \text { vs } £_{\xi} R=0 \text { vs } \ldots
$$

Katzin, Levine and Davis: J.Math.Phys. 10 (1969) 617

Long time ago ...

Long time ago ...

By the end of the Golden era of GR people began to wonder what are the symmetry inheritance properties of the various physical fields.
A thorough search was conducted...

Strategies

Strategies

- short-sighted: do the analysis for a concrete EOM, concrete isometry and in adopted coordinates

Strategies

- short-sighted: do the analysis for a concrete EOM, concrete isometry and in adopted coordinates
- ...a bit better: do the analysis for a general isometry, but concrete gravitational EOM, using some peculiar features of the particular field equations

Strategies

- short-sighted: do the analysis for a concrete EOM, concrete isometry and in adopted coordinates
- ...a bit better: do the analysis for a general isometry, but concrete gravitational EOM, using some peculiar features of the particular field equations

Can we be even more general?

A general strategy

A general strategy

- Gravitational field equation

$$
E_{a b}=8 \pi T_{a b}
$$

A general strategy

- Gravitational field equation

$$
E_{a b}=8 \pi T_{a b}
$$

- For any Killing vector field ξ^{a},

$$
£_{\xi} R_{a b c d}=0, \quad £_{\xi} \epsilon_{a b \ldots}=0, \quad £_{\xi} \nabla_{a}=\nabla_{a} £_{\xi}
$$

A general strategy

- Gravitational field equation

$$
E_{a b}=8 \pi T_{a b}
$$

- For any Killing vector field ξ^{a},

$$
£_{\xi} R_{a b c d}=0, \quad £_{\xi} \epsilon_{a b \ldots}=0, \quad £_{\xi} \nabla_{a}=\nabla_{a} £_{\xi}
$$

- Thus, $£_{\xi} E_{a b}=0$ and the problem is reduced to

$$
£_{\xi} T_{a b}=0
$$

Electromagnetic Field

EM Symm.Inh. in a Nutshell

$$
\begin{array}{lll}
(1+1) & £_{\xi} F_{a b}=0 & \\
(1+2) & £_{\xi} F_{a b}=0 & \text { CDPS '16 } \\
(1+3) & £_{\xi} F_{a b}=f * F_{a b} & \text { MW ' } 75 / W Y^{\prime} 76
\end{array}
$$

$$
D \geq 5 \quad £_{\xi} F_{a b}=? ? ?
$$

A warm up: (1+1)-dim EM field

A warm up: (1+1)-dim EM field

$$
F_{a b}=f \epsilon_{a b}
$$

A warm up: (1+1)-dim EM field

$$
\begin{aligned}
& F_{a b}=f \epsilon_{a b} \\
& 0=\mathrm{d} F \quad \checkmark \\
& 0=\mathrm{d} * F=-\mathrm{d} f \quad \Rightarrow \quad f=\text { const. }
\end{aligned}
$$

A warm up: (1+1)-dim EM field

$$
F_{a b}=f \epsilon_{a b}
$$

$$
\begin{aligned}
& 0=\mathrm{d} F \quad \checkmark \\
& 0=\mathrm{d} * F=-\mathrm{d} f \quad \Rightarrow \quad f=\text { const. }
\end{aligned}
$$

$$
£_{\xi} F_{a b}=\left(£_{\xi} f\right) \epsilon_{a b}+f\left(£_{\xi} \epsilon_{a b}\right)=0
$$

Classical result: (1+3)-dim EM field

Classical result: (1+3)-dim EM field

- first results via Rainich-Misner-Wheeler formalism [Woolley 1973; Michalski and Wainwright 1975]

Classical result: (1+3)-dim EM field

- first results via Rainich-Misner-Wheeler formalism [Woolley 1973; Michalski and Wainwright 1975]
- generalization via basis of vectors [Wainwright and Yaremovicz 1976]

Classical result: (1+3)-dim EM field

- first results via Rainich-Misner-Wheeler formalism [Woolley 1973; Michalski and Wainwright 1975]
- generalization via basis of vectors [Wainwright and Yaremovicz 1976]
- simplified proof via spinors [Tod 2007]

$$
F_{A B A^{\prime} B^{\prime}}=\phi_{A B} \epsilon_{A^{\prime} B^{\prime}}+\bar{\phi}_{A^{\prime} B^{\prime}} \epsilon_{A B}, \quad T_{A B A^{\prime} B^{\prime}}=\frac{1}{2 \pi} \phi_{A B} \bar{\phi}_{A^{\prime} B^{\prime}}
$$

Classical result: (1+3)-dim EM field

- first results via Rainich-Misner-Wheeler formalism [Woolley 1973; Michalski and Wainwright 1975]
- generalization via basis of vectors [Wainwright and Yaremovicz 1976]
- simplified proof via spinors [Tod 2007]

$$
F_{A B A^{\prime} B^{\prime}}=\phi_{A B} \epsilon_{A^{\prime} B^{\prime}}+\bar{\phi}_{A^{\prime} B^{\prime}} \epsilon_{A B}, \quad T_{A B A^{\prime} B^{\prime}}=\frac{1}{2 \pi} \phi_{A B} \bar{\phi}_{A^{\prime} B^{\prime}}
$$

- "master equation" $£_{\xi} T_{A B A^{\prime} B^{\prime}}=0$ implies $£_{\xi} \phi_{A B}=i a \phi_{A B}$ for some real function a and

$$
£_{\xi} F_{a b}=f * F_{a b}
$$

- f is constant if $F_{a b}$ is non-null
(we say that $F_{a b}$ is null if $F_{a b} F^{a b}=F_{a b} * F^{a b}=0$)
- $\quad f$ is constant if $F_{a b}$ is non-null
(we say that $F_{a b}$ is null if $F_{a b} F^{a b}=F_{a b} * F^{a b}=0$)
- further constraints in the presence of the black hole
- f is constant if $F_{a b}$ is non-null
(we say that $F_{a b}$ is null if $F_{a b} F^{a b}=F_{a b} * F^{a b}=0$)
- further constraints in the presence of the black hole
* an example of symmetry noninheriting EM field [Tariq and Tupper 1975; Michalski and Wainwright 1975]

$$
\begin{gathered}
\mathrm{d} s^{2}=\frac{1}{(2 r)^{2}}\left(\mathrm{~d} r^{2}+\mathrm{d} z^{2}\right)+r^{2} \mathrm{~d} \varphi^{2}-(\mathrm{d} t-2 z \mathrm{~d} \varphi)^{2} \\
F=-\sqrt{8}\left(\frac{\cos \alpha}{r} \mathrm{~d} r \wedge(\mathrm{~d} t-2 z \mathrm{~d} \varphi)+\sin \alpha \mathrm{d} z \wedge \mathrm{~d} \varphi\right) \\
\alpha=-2 \ln r+\alpha_{0} \\
\xi=r \frac{\partial}{\partial r}+z \frac{\partial}{\partial z}-\varphi \frac{\partial}{\partial \varphi}, \quad £_{\xi} F=-2 * F
\end{gathered}
$$

A recent result: (1+2)-dim EM field

[M. Cvitan, P. Dominis Prester and I.Sm.: CQG 33 (2016) 077001]

A recent result: (1+2)-dim EM field

[M. Cvitan, P. Dominis Prester and I.Sm.: CQG 33 (2016) 077001]

- introduce auxiliary "electric" and "magnetic" fields

$$
N=\xi^{a} \xi_{a}, \quad E_{a}=\xi^{b} F_{a b}, \quad B=\xi^{a} * F_{a}
$$

A recent result: (1+2)-dim EM field

[M. Cvitan, P. Dominis Prester and I.Sm.: CQG 33 (2016) 077001]

- introduce auxiliary "electric" and "magnetic" fields

$$
N=\xi^{a} \xi_{a}, \quad E_{a}=\xi^{b} F_{a b}, \quad B=\xi^{a} * F_{a}
$$

- the key observation

$$
\begin{array}{c|l}
8 \pi T_{a b} \xi^{a} \xi^{b}=E_{a} E^{a}+B^{2} & E^{a} £_{\xi} E_{a}+B £_{\xi} B=0 \\
4 \pi *(\xi \wedge T(\xi))_{a}=-B E_{a} & B £_{\xi} E_{a}+\left(£_{\xi} B\right) E_{a}=0
\end{array}
$$

A recent result: (1+2)-dim EM field

[M. Cvitan, P. Dominis Prester and I.Sm.: CQG 33 (2016) 077001]

- introduce auxiliary "electric" and "magnetic" fields

$$
N=\xi^{a} \xi_{a}, \quad E_{a}=\xi^{b} F_{a b}, \quad B=\xi^{a} * F_{a}
$$

- the key observation

$$
\left.\begin{gathered}
8 \pi T_{a b} \xi^{a} \xi^{b}=E_{a} E^{a}+B^{2} \\
4 \pi *(\xi \wedge T(\xi))_{a}=-B E_{a}
\end{gathered} \right\rvert\, \begin{aligned}
& E^{a} £_{\xi} E_{a}+B £_{\xi} E_{a}+\left(£_{\xi} B\right) E_{a}=0 \\
& £_{\xi} F_{a b}=0
\end{aligned}
$$

Fermions

Spin-1/2 fields

Spin-1/2 fields

- C.A. Kolassis for the Einstein-Weyl EOM

Spin-1/2 fields

- C.A. Kolassis for the Einstein-Weyl EOM
J.Math.Phys. 23 (9) 1982

Spin-1/2 fields

- C.A. Kolassis for the Einstein-Weyl EOM
J.Math.Phys. 23 (9) 1982

Phys.Lett. 95 A, 1983

Spin-1/2 fields

- C.A. Kolassis for the Einstein-Weyl EOM
J.Math.Phys. 23 (9) 1982

Phys.Lett. 95 A, 1983
(a) if $\ell^{a}=\nu^{A} \nu^{A^{\prime}}$ is collinear with one of the principal null directions of the Weyl tensor

$$
£_{\xi} \nu^{A}=i s \nu^{A}
$$

with real constant s

Spin-1/2 fields

- C.A. Kolassis for the Einstein-Weyl EOM
J.Math.Phys. 23 (9) 1982

Phys.Lett. 95 A, 1983
(a) if $\ell^{a}=\nu^{A} \nu^{A^{\prime}}$ is collinear with one of the principal null directions of the Weyl tensor

$$
£_{\xi} \nu^{A}=i s \nu^{A}
$$

with real constant s
(b) ...otherwise

$$
£_{\xi} \nu^{A}=f \nu^{A}
$$

Scalar Fields

Real scalar field

Real scalar field

- minimally coupled, canonical [Hoenselaers 1978; I.Sm. 2015]

$$
\begin{gathered}
T_{a b}=\left(\nabla_{a} \phi\right)\left(\nabla_{b} \phi\right)+(X-V(\phi)) g_{a b}, \quad X \equiv-\frac{1}{2}\left(\nabla^{c} \phi\right)\left(\nabla_{c} \phi\right) \\
\Rightarrow \quad 0=£_{\xi} V(\phi)=V^{\prime}(\phi) £_{\xi} \phi
\end{gathered}
$$

Real scalar field

- minimally coupled, canonical [Hoenselaers 1978; I.Sm. 2015]

$$
\begin{gathered}
T_{a b}=\left(\nabla_{a} \phi\right)\left(\nabla_{b} \phi\right)+(X-V(\phi)) g_{a b}, \quad X \equiv-\frac{1}{2}\left(\nabla^{c} \phi\right)\left(\nabla_{c} \phi\right) \\
\Rightarrow \quad 0=£_{\xi} V(\phi)=V^{\prime}(\phi) £_{\xi} \phi
\end{gathered}
$$

Real scalar field

- minimally coupled, canonical [Hoenselaers 1978; I.Sm. 2015]

$$
\begin{gathered}
T_{a b}=\left(\nabla_{a} \phi\right)\left(\nabla_{b} \phi\right)+(X-V(\phi)) g_{a b}, \quad X \equiv-\frac{1}{2}\left(\nabla^{c} \phi\right)\left(\nabla_{c} \phi\right) \\
\Rightarrow \quad 0=£_{\xi} V(\phi)=V^{\prime}(\phi) £_{\xi} \phi
\end{gathered}
$$

$$
\begin{array}{l|l}
V^{\prime}(\phi) \neq 0 & £_{\xi} \phi=0 \\
V^{\prime}(\phi)=0 & £_{\xi} \phi=a=\text { const. }
\end{array}
$$

and if ξ^{a} has compact orbits then $a=0$.

- an example of time dependent real scalar field in a stationary spacetime: M. Wyman, Phys. Rev. D 24 (1981) 839

$$
\begin{gathered}
\mathrm{d} s^{2}=-e^{\nu(r)} \mathrm{d} t^{2}+e^{\lambda(r)} \mathrm{d} \mathrm{r}^{2}+\mathrm{r}^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right) \\
\phi(t)=\gamma t, \quad \gamma=\text { const. }
\end{gathered}
$$

- an example of time dependent real scalar field in a stationary spacetime: M. Wyman, Phys. Rev. D 24 (1981) 839

$$
\begin{gathered}
\mathrm{d} s^{2}=-e^{\nu(r)} \mathrm{d} t^{2}+e^{\lambda(r)} \mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right) \\
\phi(t)=\gamma t, \quad \gamma=\text { const. }
\end{gathered}
$$

- two solutions: a simpler one with $e^{\nu}=8 \pi \gamma^{2} r^{2}$ and $e^{\lambda}=2$, and the second one in a form a Taylor series.
- "k-essence" theories a generic model for the inflationary evolution

$$
T_{a b}=p, X\left(\nabla_{a} \phi\right)\left(\nabla_{b} \phi\right)+p g_{a b}, \quad p=p(\phi, X)
$$

- "k-essence" theories a generic model for the inflationary evolution

$$
T_{a b}=p, X\left(\nabla_{a} \phi\right)\left(\nabla_{b} \phi\right)+p g_{a b}, \quad p=p(\phi, X)
$$

- lemma [I.Sm. 2015] $£_{\xi} p=£_{\xi}\left(X_{p, x}\right)=0$
- "k-essence" theories a generic model for the inflationary evolution

$$
T_{a b}=p, x\left(\nabla_{a} \phi\right)\left(\nabla_{b} \phi\right)+p g_{a b}, \quad p=p(\phi, X)
$$

- lemma [I.Sm. 2015] $£_{\xi} p=£_{\xi}(X p, x)=0$

$$
X_{p, x}=0 \Rightarrow £_{\xi} £_{\xi} \phi=0 \text { along the orbit (for admissible } T_{a b} \text {) }
$$

- "k-essence" theories a generic model for the inflationary evolution

$$
T_{a b}=p, x\left(\nabla_{a} \phi\right)\left(\nabla_{b} \phi\right)+p g_{a b}, \quad p=p(\phi, X)
$$

- lemma [I.Sm. 2015] $£_{\xi} p=£_{\xi}(X p, X)=0$
$X p, \chi=0 \Rightarrow £_{\xi} £_{\xi} \phi=0$ along the orbit (for admissible $T_{a b}$)
$X_{p, X} \neq 0 \Rightarrow £_{\xi} \phi$ is a solution to

$$
p_{, \phi}\left(£_{\xi} \phi\right)^{2}+2 X_{p, x} £_{\xi} £_{\xi} \phi=0
$$

which is either identically zero or doesn't have any zeros along the orbit of ξ^{a}

Addendum: Ideal fluid

Addendum: Ideal fluid

- [Hoenselaers 1978]

$$
T_{a b}=(\rho+p) u_{a} u_{b}+p g_{a b}
$$

Addendum: Ideal fluid

- [Hoenselaers 1978]

$$
T_{a b}=(\rho+p) u_{a} u_{b}+p g_{a b}
$$

$$
£_{\xi} T_{a b}=0 \Rightarrow
$$

$$
£_{\xi} \rho=£_{\xi} p=0=£_{\xi} u^{a}
$$

Complex scalar field

Complex scalar field

- energy-momentum tensor

$$
T_{a b}=\nabla_{(a} \phi \nabla_{b)} \phi^{*}-\frac{1}{2}\left(\nabla^{c} \phi \nabla_{c} \phi^{*}+V\left(\phi^{*} \phi\right)\right) g_{a b}
$$

Complex scalar field

- energy-momentum tensor

$$
T_{a b}=\nabla_{(a} \phi \nabla_{b)} \phi^{*}-\frac{1}{2}\left(\nabla^{c} \phi \nabla_{c} \phi^{*}+V\left(\phi^{*} \phi\right)\right) g_{a b}
$$

- e.g. in polar form $\phi=A e^{i \alpha}$:

$$
T_{a b}=\nabla_{a} A \nabla_{b} A+A^{2} \nabla_{a} \alpha \nabla_{b} \alpha+\frac{T+V\left(A^{2}\right)}{D-2} g_{a b}
$$

- subcase \#1: symmetry inheriting amplitude, $£_{\xi} A=0$
$\rightarrow £_{\xi} \alpha$ is a constant !
- subcase \#1: symmetry inheriting amplitude, $£_{\xi} A=0$

$\rightarrow £_{\xi} \alpha$ is a constant !

- subcase \#2: symmetry inheriting phase, $£_{\xi} \alpha=0$,

$$
\left(£_{\xi} A\right)^{2}+\frac{N}{D-2} V\left(A^{2}\right)=\lambda
$$

- subcase \#1: symmetry inheriting amplitude, $£_{\xi} A=0$

$\rightarrow £_{\xi} \alpha$ is a constant !

- subcase \#2: symmetry inheriting phase, $\mathrm{f}_{\xi} \alpha=0$,

$$
\left(£_{\xi} A\right)^{2}+\frac{N}{D-2} V\left(A^{2}\right)=\lambda
$$

* for $V=\mu^{2} A^{2}$, the only symmetry noninheriting amplitude A which is bounded or periodic along the orbits of ξ^{a} is

$$
A \sim \sin \left(\sqrt{\kappa}\left(x-x_{0}\right)\right)
$$

but $N=$ const. >0 and ξ^{a} is hypersurface orthogonal

Black Hole Hair

What is black hole hair?

What is black hole hair?

- the term was coined by J.A. Wheeler and R. Ruffini, Introducing the black hole, Physics Today 24 (1971) 30

What is black hole hair?

- the term was coined by J.A. Wheeler and R. Ruffini, Introducing the black hole, Physics Today 24 (1971) 30
- roughly, a broad definition:
any non-gravitational field in a black hole spacetime

What is black hole hair?

- the term was coined by J.A. Wheeler and R. Ruffini, Introducing the black hole, Physics Today 24 (1971) 30
- roughly, a broad definition: any non-gravitational field in a black hole spacetime
- more refined definition:
any non-gravitational field in a black hole spacetime contributing to the conserved "charges" associated to the black hole, apart from the total mass M, the angular momentum J, the electric charge Q and the magnetic charge P (see also: primary/secondary hair distinction)

No-hair theorems

No-hair theorems

- Bekenstein, PRL 28 (1971) 452

No-hair theorems

- Bekenstein, PRL 28 (1971) 452

The absence of the scalar black hole hair is always proven under some particular assumptions about the scalar field ϕ,

No-hair theorems

- Bekenstein, PRL 28 (1971) 452

The absence of the scalar black hole hair is always proven under some particular assumptions about the scalar field ϕ,
(a) a choice of the scalar field coupling to gravity,

No-hair theorems

- Bekenstein, PRL 28 (1971) 452

The absence of the scalar black hole hair is always proven under some particular assumptions about the scalar field ϕ,
(a) a choice of the scalar field coupling to gravity,
(b) an energy condition,

No-hair theorems

- Bekenstein, PRL 28 (1971) 452

The absence of the scalar black hole hair is always proven under some particular assumptions about the scalar field ϕ,
(a) a choice of the scalar field coupling to gravity,
(b) an energy condition,
(c) details about the "asymptotics"

No-hair theorems

- Bekenstein, PRL 28 (1971) 452

The absence of the scalar black hole hair is always proven under some particular assumptions about the scalar field ϕ,
(a) a choice of the scalar field coupling to gravity,
(b) an energy condition,
(c) details about the "asymptotics"
(d) the assumption that the scalar field ϕ inherits the spacetime symmetries

Symmetry noninheriting scalar black hole hair

Symmetry noninheriting scalar black hole hair

- Herdeiro and Radu, PRL 112 (2014) 221101

Symmetry noninheriting scalar black hole hair

- Herdeiro and Radu, PRL 112 (2014) 221101 numerical stationary axially symmetric solution of the Einstein-Klein-Gordon EOM, with the complex scalar field

$$
\phi=A(r, \theta) e^{i(m \varphi-\omega t)} \quad \text { with } \quad \omega=\Omega_{\mathrm{H}} m
$$

Symmetry noninheriting scalar black hole hair

- Herdeiro and Radu, PRL 112 (2014) 221101 numerical stationary axially symmetric solution of the Einstein-Klein-Gordon EOM, with the complex scalar field

$$
\phi=A(r, \theta) e^{i(m \varphi-\omega t)} \quad \text { with } \quad \omega=\Omega_{\mathrm{H}} m
$$

- Are there any other hairy black hole solutions based on symmetry noninheritance?
What are the constraints on the existence of the sni scalar black hole hair?
- on any Killing horizon $H[\xi]$ we have $R(\xi, \xi)=0$
- on any Killing horizon $H[\xi]$ we have $R(\xi, \xi)=0$
- thus, for the Einstein-KG, $T(\xi, \xi)=0$ on $H[\xi]$
- on any Killing horizon $H[\xi]$ we have $R(\xi, \xi)=0$
- thus, for the Einstein-KG, $T(\xi, \xi)=0$ on $H[\xi]$
\rightarrow implications [I.Sm. 2015]
- on any Killing horizon $H[\xi]$ we have $R(\xi, \xi)=0$
- thus, for the Einstein-KG, $T(\xi, \xi)=0$ on $H[\xi]$
\rightarrow implications [I.Sm. 2015]
\star real canonical scalar field, $£_{\xi} \phi=0$ (no sni BH hair!)
- on any Killing horizon $H[\xi]$ we have $R(\xi, \xi)=0$
- thus, for the Einstein-KG, $T(\xi, \xi)=0$ on $H[\xi]$
\rightarrow implications [I.Sm. 2015]
\star real canonical scalar field, $£_{\xi} \phi=0$ (no sni BH hair!)
\star complex scalar field with symmetry inheriting amplitude: a constraint for $H[\chi]$ with $\chi^{a}=k^{a}+\Omega_{H} m^{a}$

$$
£_{k} \alpha+\Omega_{H} £_{m} \alpha=0
$$

- on any Killing horizon $H[\xi]$ we have $R(\xi, \xi)=0$
- thus, for the Einstein-KG, $T(\xi, \xi)=0$ on $H[\xi]$
\rightarrow implications [I.Sm. 2015]
* real canonical scalar field, $£_{\xi} \phi=0$ (no sni BH hair!)
\star complex scalar field with symmetry inheriting amplitude: a constraint for $H[\chi]$ with $\chi^{a}=k^{a}+\Omega_{H} m^{a}$

$$
f_{k} \alpha+\Omega_{H} f_{m} \alpha=0
$$

* complex scalar field with symmetry inheriting phase: no sni BH hair (via Vishveshwara-Carter tm)

Hair constraints beyond Einstein

[I.Sm. arXiv:1609.04013]

Hair constraints beyond Einstein

[I.Sm. arXiv:1609.04013]

- idea: use the Frobenius' theorem (diff. geom.)

Hair constraints beyond Einstein

[I.Sm. arXiv:1609.04013]

- idea: use the Frobenius' theorem (diff. geom.)

\star integrable iff involute, $\left[X_{(i)}, X_{(j)}\right]^{a} \in \Delta$

Hair constraints beyond Einstein

[I.Sm. arXiv:1609.04013]

- idea: use the Frobenius' theorem (diff. geom.)

\star integrable iff involute, $\left[X_{(i)}, X_{(j)}\right]^{a} \in \Delta$
\star orthogonally-transitive iff $X^{(1)} \wedge \ldots \wedge X^{(n)} \wedge \mathrm{d} X^{(i)}=0$

static	$k \wedge d k=0$	Schwarzschild
circular	$k \wedge m \wedge d k=$	
	$=k \wedge m \wedge d m=0$	Kerr

static	$k \wedge d k=0$	Schwarzschild
circular	$k \wedge m \wedge d k=$	
	$=k \wedge m \wedge d m=0$	Kerr

- static \rightarrow Ricci static,

$$
k \wedge R(k)=0, \quad R_{t i}=0
$$

static	$k \wedge d k=0$	Schwarzschild
circular	$k \wedge m \wedge d k=$	
	$=k \wedge m \wedge d m=0$	Kerr

- static \rightarrow Ricci static,

$$
k \wedge R(k)=0, \quad R_{t i}=0
$$

- circular \rightarrow Ricci circular,

$$
k \wedge m \wedge R(k)=k \wedge m \wedge R(m)=0, \quad R_{t i}=R_{\varphi i}=0
$$

- generalization:
a spacetime with commuting Killing vectors $\left\{\xi_{(1)}^{a}, \ldots, \xi_{(n)}^{a}\right\}$, s.t.

$$
\xi^{(1)} \wedge \ldots \wedge \xi^{(n)} \wedge \mathrm{d} \xi^{(i)}=0
$$

- generalization:
a spacetime with commuting Killing vectors $\left\{\xi_{(1)}^{a}, \ldots, \xi_{(n)}^{a}\right\}$, s.t.

$$
\xi^{(1)} \wedge \ldots \wedge \xi^{(n)} \wedge \mathrm{d} \xi^{(i)}=0
$$

- the class of gravitational tensors $E_{a b}$ such that

$$
\xi^{(1)} \wedge \ldots \wedge \xi^{(n)} \wedge E\left(\xi^{(i)}\right)=0
$$

- generalization:
a spacetime with commuting Killing vectors $\left\{\xi_{(1)}^{a}, \ldots, \xi_{(n)}^{a}\right\}$, s.t.

$$
\xi^{(1)} \wedge \ldots \wedge \xi^{(n)} \wedge \mathrm{d} \xi^{(i)}=0
$$

- the class of gravitational tensors $E_{a b}$ such that

$$
\begin{aligned}
& \xi^{(1)} \wedge \ldots \wedge \xi^{(n)} \wedge E\left(\xi^{(i)}\right)=0 \\
& \ldots \Rightarrow T(\chi, \chi)=0 \quad \text { on } H[\chi]
\end{aligned}
$$

Open Questions

Voids in the table

Voids in the table

- non-minimally coupled real scalar fields
[I.Sm. 2015] \rightarrow conformal symmetry inheritance, $£_{\xi} g_{a b}=\psi g_{a b}$

Voids in the table

- non-minimally coupled real scalar fields
[I.Sm. 2015] \rightarrow conformal symmetry inheritance, $£_{\xi} g_{a b}=\psi g_{a b}$
- complex scalar field
symmetry inheriting phase with general potential $V=V\left(A^{2}\right)$, the field with sni both A and α;

Voids in the table

- non-minimally coupled real scalar fields
[I.Sm. 2015] \rightarrow conformal symmetry inheritance, $£_{\xi} g_{a b}=\psi g_{a b}$
- complex scalar field
symmetry inheriting phase with general potential $V=V\left(A^{2}\right)$, the field with sni both A and α;
- Weyl fermions with the general gravitational EOM; massive, Dirac fermions

Voids in the table

- non-minimally coupled real scalar fields
[I.Sm. 2015] \rightarrow conformal symmetry inheritance, $£_{\xi} g_{a b}=\psi g_{a b}$
- complex scalar field
symmetry inheriting phase with general potential $V=V\left(A^{2}\right)$, the field with sni both A and α;
- Weyl fermions with the general gravitational EOM; massive, Dirac fermions
- EM field for $D \geq 5$

Symmetry inheritance splitting

Symmetry inheritance splitting

- What if we have two or more matter fields in the spacetime?

Symmetry inheritance splitting

- What if we have two or more matter fields in the spacetime?
- For example, $T_{a b}=T_{a b}^{(1)}+T_{a b}^{(2)}$; under which conditions $\mathrm{f}_{\xi} T_{a b}=0$ can be split into

$$
£_{\xi} T_{a b}^{(1)}=0=£_{\xi} T_{a b}^{(2)} \quad ?
$$

Symmetry inheritance splitting

- What if we have two or more matter fields in the spacetime?
- For example, $T_{a b}=T_{a b}^{(1)}+T_{a b}^{(2)}$; under which conditions $\mathrm{f}_{\xi} T_{a b}=0$ can be split into

$$
£_{\xi} T_{a b}^{(1)}=0=£_{\xi} T_{a b}^{(2)} \quad ?
$$

- Wainwright and Yaremovicz [Gen.Rel.Grav. 7 (1976) 345-359 and 595-608] treat the EM field + charged ideal fluid

Approximate symmetry inheritance

Approximate symmetry inheritance

- the definition of the approximate symmetries brings in certain ambiguities ...

Approximate symmetry inheritance

- the definition of the approximate symmetries brings in certain ambiguities ...
\star conformal Killing vector field, $£_{\xi} g_{a b}=\psi g_{a b}$

Approximate symmetry inheritance

- the definition of the approximate symmetries brings in certain ambiguities ...
\star conformal Killing vector field, $£_{\xi} g_{a b}=\psi g_{a b}$
\star Matzner J.Math.Phys. 9 (1968) 1657, $\nabla^{b} \nabla_{\left(a \xi_{b}\right)}+\lambda \xi_{a}=0$;
\rightarrow Krisch and Glass arXiv:1508.04614

Approximate symmetry inheritance

- the definition of the approximate symmetries brings in certain ambiguities ...
\star conformal Killing vector field, $£_{\xi} g_{a b}=\psi g_{a b}$
\star Matzner J.Math.Phys. 9 (1968) 1657, $\nabla^{b} \nabla_{\left(a \xi_{b}\right)}+\lambda \xi_{a}=0 ;$
\rightarrow Krisch and Glass arXiv:1508.04614
- we need a systematic approach ...

Thank you for your attention!

