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e acontinuous symmetry (isometry) of the spacetime metric g,
is encapsulated in a Killing vector field &4,

£e8ab = Vabp + Vp€a =0

e for example,
2-dim Euclid 0y, 0, and xd, — y0y
(14 1)-dim Minkowski 0;, Oy and x0; + t0y
Kerr black hole 9; and 9,
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Symmetry inheritance

e Suppose that some matter/gauge field )%+, is present in the
spacetime, solution to a system of gravitational-matter/gauge
field equations.

...a natural question occurs :

£e8ab =0 = £y =07

If the answer is yes, then we say that

the field 1%, inherits the symmetries of the metric g,



Why bother?







math. physics ; phenomenology

classifications & a quest for the
uniqueness thms black hole hair
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Symmetry inheritance for ...

* fields of various spin
* various types of couplings
* various gravitational theories

* different spacetime dimensions
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* leave aside the related mathematical problem of collineations
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* leave aside the related mathematical problem of collineations

£egap = 0 vs £§Rabcd =0 vs £§Rab =0 vs £§R = (Oiivs .

Katzin, Levine and Davis: J.Math.Phys. 10 (1969) 617
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Long time ago ...

By the end of the Golden era
of GR people began to won-
der what are the symmetry
inheritance properties of the
various physical fields.

A thorough search was con-
ducted ...
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Strategies

short-sighted: do the analysis for a concrete EOM, concrete
isometry and in adopted coordinates

...a bit better: do the analysis for a general isometry, but

concrete gravitational EOM, using some peculiar features of
the particular field equations

Can we be even more general?
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A general strategy

e Gravitational field equation

Eab — 87 Tab

e For any Killing vector field &4,

££Rabcd =0, £§€ab... =0, £§Va =V, ££

e Thus, £¢E;, = 0 and the problem is reduced to

£{ Tab =)






EM Symm.lnh.yivn a Nutshell
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A warm up: (1+1)-dim EM field

Fap :feab

PR dib e
O=dxF = df =it — calist

Eebyy = TEr o engas F LEE€ o potD
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Classical result: (1+3)-dim EM field

first results via Rainich-Misner-Wheeler formalism
[Woolley 1973; Michalski and Wainwright 1975]

generalization via basis of vectors
[Wainwright and Yaremovicz 1976]

simplified proof via spinors [Tod 2007]
st 1 i
Fapap = Gageas + Qap €4,  Tapas = - GaBPup

“master equation” £¢Tugap = 0 implies £:dap = iadap for
some real function a and

b= RreF



e fis constar
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e fis constant if Fup is non-null

(we say that Fpis'pullif B2 FEE =B Fe? = ()

further constraints in the presence of the black hole

* an example of symmetry noninheriting EM field
[Tarig and Tupper 1975; Michalski and Wainwright 1975]

ds? = (21)2 (dr? + dZ%) + rPdy® — (dt —2zdyp)?

F=i"+/8 (coia dr A (dt — 2zdep) + sinadz A d(p)

a=—2Ilnr+ ap

9
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A recent result: (1+2)-dim EM field

[M. Cvitan, P. Dominis Prester and I.Sm.: CQG 33 (2016) 077001]

e introduce auxiliary “electric” and “magnetic” fields

N:§a£a7 Ea:é-bFabv B:é‘a*’:a

e the key observation

BT Tap€6” = EoE° + B? | E°f¢E,+ BEB=0
4 * (EANT(E))a= —BE, | BEcE,+ (£¢B)E, =0

£cFap =0
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Spin-1/2 fields

e C.A. Kolassis for the Einstein-Weyl EOM

J-Math.Phys. 23 (9) 1982
Phys.Lett. 95 A, 1983

(a) if ¢4 = vV is collinear with one of the principal null
directions of the Weyl tensor

££z/\ = jsv?

with real constant s

(b) ...otherwise
£51/A :fz/A
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Real scalar field

e minimally coupled, canonical
[Hoenselaers 1978; 1.Sm. 2015]

oo = (Vad)(Vod) + (X = V(O))gws . X = — (V6)(Vet)

= 0=£V(¢) = V'(¢) £

V() #0 | £e6=0
V/(¢) =04 £sp="a = const.

and if £ has compact orbits then a = 0.



e an example of time dependent real scalar field in a stationary
spacetime: M. Wyman, Phys. Rev. D 24 (1981) 839

ds? = —e"(Nd? + Xdr? 4 r?(d6? + sin? 0 dp?)

o 1) =0 7" 5/ —xoust.



an example of time dependent real scalar field in a stationary
spacetime: M. Wyman, Phys. Rev. D 24 (1981) 839

ds? = —e"(Nd? + Xdr? 4 r?(d6? + sin? 0 dp?)

o 1) =0 7" 5/ —xoust.

two solutions: a simpler one with ¢’ = 87?r? and ¢* = 2, and
the second one in a form a Taylor series.
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“k-essence” theories
a generic model for the inflationary evolution

Tab = Dixi (V,Ab)(Vb(Zﬁ) T P8, P= p((ls: X)

lemma [1.Sm. 2015] £¢p = £¢(Xpx) =0
Xpx =0 = £¢£c¢ = 0 along the orbit (for admissible T,)
Xpx #0 = £¢¢ is asolution to

P.s(£c8)* + 2Xp.x £efed =0

which is either identically zero or doesn’t have any zeros along

the orbit of £4
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Addendum: Ideal fluid

e [Hoenselaers 1978]

Tas = (p+ p) Ualty + p8at

£§Tab O =2
fep=£ep=0= ££ua
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Complex scalar field

e energy-momentum tensor

oo = Via# V9" = 5 (VOVed* + V(6"9)) s

e eg. inpolar form ¢ = Ae® :

T + V(A?)

Top = VuANPA A? V.a Vo + 5.5

8ab



e subcase #1:

R S




e subcase #1: symmetry inheriting amplitude, £.A = 0

— feais a constant !
e subcase #2: symmetry inheriting phase, £ca = 0,

N
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subcase #1: symmetry inheriting amplitude, £,A = 0

— feais a constant !
subcase #2: symmetry inheriting phase, £ca = 0,
N
LAY + —— V(A =
(£cAY: + 50 V()

x for V = p?A?, the only symmetry noninheriting amplitude A
which is bounded or periodic along the orbits of £ is

A ~ sin(+v/k(x — x))

but N = const. > 0 and £ is hypersurface orthogonal
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What is black hole hair?

the term was coined by J.A. Wheeler and R. Ruffini, Introducing
the black hole, Physics Today 24 (1971) 30

roughly, a broad definition:

any non-gravitational field in a black hole spacetime

more refined definition:

any non-gravitational field in a black hole spacetime
contributing to the conserved “charges” associated to the black
hole, apart from the total mass M, the angular momentum J,
the electric charge Q and the magnetic charge P

(see also: primary/secondary hair distinction)
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No-hair theorems

e Bekenstein, PRL 28 (1971) 452

The absence of the scalar black hole hair is always proven
under some particular assumptions about the scalar field ¢,

(a) a choice of the scalar field coupling to gravity,
(b) an energy condition,
(c) details about the “asymptotics”

(d) the assumption that the scalar field ¢ inherits the spacetime
symmetries
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Symmetry noninheriting scalar black hole hair

e Herdeiro and Radu, PRL 112 (2014) 221101

numerical stationary axially symmetric solution of the
Einstein-Klein-Gordon EOM, with the complex scalar field

¢ = A(r,0) lmaset) with w = Qum

e Are there any other hairy black hole solutions based on
symmetry noninheritance?
What are the constraints on the existence of the sni scalar
black hole hair?
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e on any Killing horizon H[¢] we have R({,&) = 0

e thus, for the Einstein-KG, T(&,£) = 0 on H[¢]

— implications [1.Sm. 2015]

* real canonical scalar field, £¢¢ = 0 (no sni BH hair!)

* complex scalar field with symmetry inheriting amplitude:
a constraint for H[x] with x* = k% + Qum*

fra+ QuEna =0

* complex scalar field with symmetry inheriting phase:
no sni BH hair (via Vishveshwara-Carter tm)
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Hair constraints beyond Einstein
[1.Sm. arXiv:1609.04013]

e idea: use the Frobenius’ theorem (diff. geom.)

4
4
4
4
¥
¥
»

- S

 integrable iff involute, [X(;), X(j]* € A

* orthogonally-transitive iff X(V A ... A XM A dx() =0
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static | kAdk =0 Schwarzschild
circular | k AmAdk =
=kAmANdm=0 | Kerr

static — Ricci static,

k/\R(k):O, Rt,‘:O

circular — Ricci circular,

koam A R(k) = E/XntAROAL =0, Ri =R, i=.0
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e generalization:
a spacetime with commuting Killing vectors {5(“1), e ,fE‘n)}, s.t.

EDA . AEPD A =0

e the class of gravitational tensors E,p, such that

EMA L ANEDAEED) =0

= uTEeel a0 on . Hiv]
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Voids in the table
non-minimally coupled real scalar fields
[1.Sm. 2015] — conformal symmetry inheritance, £:8,, = V8ap

complex scalar field
symmetry inheriting phase with general potential V = V(A?),
the field with sni both A and «;

Weyl fermions with the general gravitational EOM;

massive, Dirac fermions

EM field for D > 5
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Symmetry inheritance splitting

What if we have two or more matter fields in the spacetime?
For example, T,, = Té;) + T(gi); under which conditions
£¢Tap = 0 can be split into

1 2
£ Téb) =0 = fLe T(gb) ?

Wainwright and Yaremovicz [Gen.Rel.Grav. 7 (1976) 345-359
and 595-608] treat the EM field + charged ideal fluid
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Approximate symmetry inheritance

e the definition of the approximate symmetries brings in certain
ambiguities ...

* conformal Killing vector field, £¢8,, = ¥ gap

* Matzner J.Math.Phys. 9 (1968) 1657, V2V &) + Aa = 0;
— Krisch and Glass arXiv:1508.04614

e we need a systematic approach ...






