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Figure : Huge jets of particles are shot out
of the black holes at close to the speed of
light. Figure : Powerful jets coming out from the

center of the galaxy NGC 1433.

Figure : Realistic representation of merging of two black holes.
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Quantum Gravity (Now)

Figure : String Theory

Figure : Loop Quantum Gravity

Emergent Gravity→thermodynamical approach to Quantum Gravity
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General Relativity in “Pills”

We set −g = det | gab |
Hilbert-Einstein action in presence of matter

AHE =

∫
d4x
√
−g [Lgrav + Lmatt(gab, qA)], Lgrav = R

Contribution of gravity

1√
−g

δAgrav
δgab

= 0⇒ Gab = Rab − 1/2gabR

Contribution of matter
1√
−g

δAmatt
δgab

= −1
2T

ab

Putting together the two contributes

δAtot
δgab

= 0⇒ 2Gab − T ab = 0

We define Pabcd = ∂R
∂Rabcd

= 1
2 (gacgbd − gadgbc)
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The Concept of Horizon (H)

Metric signature (−,+ + +), G = c = 1, a = 0, ..., 3, α = 1, ..., 3.
Schwarzschild’s solution of Einstein’s gravity field equations

ds2 = −
(
1− 2m

r

)
dt2 +

dr2

1− 2m
r

+ r2 (dθ2 + sin2θdφ2)
(Apparent) Pathology of the metric in r = 2m: gtt → 0, grr diverges on H

Figure : Schwarzschild Spacetime
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The concept of the Horizon is observer dependent

Local Inertial Frame : ds2 = −dT 2 + dX 2 + dL2
⊥

(T ,X)→ (t, l)
For |X | > |T |

κT =
√
2κl sinh(κt)

κX = ±
√
2κl cosh(κt)

For |X | < |T |

κT = ±
√
−2κl cosh(κt)

κX =
√
−2κl sinh(κt)

Figure : Rindler Frame

Local Rindler Frame : ds2 = −2κldt2 + dl2
2κl + dL2

⊥
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The concept of Horizon: The Rindler Metric

Let us set l = 1
2κx

2, N2(xα) =
√
2κ|l | = κ2x2

Rindler Metr ic : −N2(xα)dt2 + γαβdxαdxβ
Static spacetimes with the following properties:

1 Location of Horizon: g00 = N2(~x)→ 0 on H
2 Timelike Killing Vector field: ξa = (1, 0)R = κ(X ,T )I , ξaξa = −N2 onH−−−→ 0

3 Future directed null vector ka = (1, 1)I
4 We define Nua = Nna = Nr a = ξa

onH−−−→ κXka

The thermal effects arise from the
Eucl id Sector . Setting

TE = iT , tE = it
N2 = κ2x2

we get the Rindler Metric in the Euclid
sector:

−ds2
E = N2dt2

E + dx2 = dT 2
E − dX 2

Figure : Euclid Sector
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Black Hole Thermodynamics

1971 :Hawking proves that the sum of the areas of a black hole horizon (H)
cannot decrease

S =
1
4AH.

1972 − 1974 :Bekenstein → black hole horizon has an entropy proportional
to its area.

δM =
κ

8π =
κ

2π δ
(
A
4

)
where κ = 1/(4M).
If A ∝ S, κ ∝ T , M ∝ E , the previous equation becomes

δE = T δS.

1975 : Hawking discovers that the Black Holes can radiate.
1976 : Unruh effect: an accelerated observer perceives the vacuum as a
thermal state with a temperature given by

T =
}
c
κ

2π .
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Emergent Gravity: Motivations

Thermodynamic of Rindler horizon (null hypersurfaces) is observer dependent.
Principle of Equivalence, General Covariance → Gravity is the manifestation
of curved spacetime.

Kinematics of gravity encoded in ∇aT a
b = 0.

Dynamics of gravity: there is not any elegant principle to determine how
matter determine the evolution of spacetime.

- Einstein: The dynamics is contained in Ga
b = 8πGT a

b , with Ga
b made by

second derivatives of the metric.

- Generalize Newton’s law ∇2φ ∝ ρ in a observer dependent way:

One can show that ρ = Tabuaub, φ ∝ R ij
ij ≡ R

−2 to obtain

Gabuaub = 8πGTabuaub for all observers−−−−−−−−→ R−2 = 8πGρ
where R is the radius of the curvature of the space.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 9 / 31



Emergent Gravity: Motivations

Thermodynamic of Rindler horizon (null hypersurfaces) is observer dependent.
Principle of Equivalence, General Covariance → Gravity is the manifestation
of curved spacetime.

Kinematics of gravity encoded in ∇aT a
b = 0.

Dynamics of gravity: there is not any elegant principle to determine how
matter determine the evolution of spacetime.

- Einstein: The dynamics is contained in Ga
b = 8πGT a

b , with Ga
b made by

second derivatives of the metric.

- Generalize Newton’s law ∇2φ ∝ ρ in a observer dependent way:

One can show that ρ = Tabuaub, φ ∝ R ij
ij ≡ R

−2 to obtain

Gabuaub = 8πGTabuaub for all observers−−−−−−−−→ R−2 = 8πGρ
where R is the radius of the curvature of the space.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 9 / 31



Emergent Gravity: Motivations

Thermodynamic of Rindler horizon (null hypersurfaces) is observer dependent.
Principle of Equivalence, General Covariance → Gravity is the manifestation
of curved spacetime.

Kinematics of gravity encoded in ∇aT a
b = 0.

Dynamics of gravity: there is not any elegant principle to determine how
matter determine the evolution of spacetime.

- Einstein: The dynamics is contained in Ga
b = 8πGT a

b , with Ga
b made by

second derivatives of the metric.

- Generalize Newton’s law ∇2φ ∝ ρ in a observer dependent way:

One can show that ρ = Tabuaub, φ ∝ R ij
ij ≡ R

−2 to obtain

Gabuaub = 8πGTabuaub for all observers−−−−−−−−→ R−2 = 8πGρ
where R is the radius of the curvature of the space.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 9 / 31



Emergent Gravity: Motivations

Thermodynamic of Rindler horizon (null hypersurfaces) is observer dependent.
Principle of Equivalence, General Covariance → Gravity is the manifestation
of curved spacetime.

Kinematics of gravity encoded in ∇aT a
b = 0.

Dynamics of gravity: there is not any elegant principle to determine how
matter determine the evolution of spacetime.

- Einstein: The dynamics is contained in Ga
b = 8πGT a

b , with Ga
b made by

second derivatives of the metric.

- Generalize Newton’s law ∇2φ ∝ ρ in a observer dependent way:

One can show that ρ = Tabuaub, φ ∝ R ij
ij ≡ R

−2 to obtain

Gabuaub = 8πGTabuaub for all observers−−−−−−−−→ R−2 = 8πGρ
where R is the radius of the curvature of the space.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 9 / 31



Emergent Gravity: Motivations

Thermodynamic of Rindler horizon (null hypersurfaces) is observer dependent.
Principle of Equivalence, General Covariance → Gravity is the manifestation
of curved spacetime.

Kinematics of gravity encoded in ∇aT a
b = 0.

Dynamics of gravity: there is not any elegant principle to determine how
matter determine the evolution of spacetime.

- Einstein: The dynamics is contained in Ga
b = 8πGT a

b , with Ga
b made by

second derivatives of the metric.

- Generalize Newton’s law ∇2φ ∝ ρ in a observer dependent way:

One can show that ρ = Tabuaub, φ ∝ R ij
ij ≡ R

−2 to obtain

Gabuaub = 8πGTabuaub for all observers−−−−−−−−→ R−2 = 8πGρ
where R is the radius of the curvature of the space.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 9 / 31



Emergent Gravity: Motivations

Thermodynamic of Rindler horizon (null hypersurfaces) is observer dependent.
Principle of Equivalence, General Covariance → Gravity is the manifestation
of curved spacetime.

Kinematics of gravity encoded in ∇aT a
b = 0.

Dynamics of gravity: there is not any elegant principle to determine how
matter determine the evolution of spacetime.

- Einstein: The dynamics is contained in Ga
b = 8πGT a

b , with Ga
b made by

second derivatives of the metric.

- Generalize Newton’s law ∇2φ ∝ ρ in a observer dependent way:

One can show that ρ = Tabuaub, φ ∝ R ij
ij ≡ R

−2 to obtain

Gabuaub = 8πGTabuaub for all observers−−−−−−−−→ R−2 = 8πGρ
where R is the radius of the curvature of the space.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 9 / 31



Emergent Gravity: Functional Approach (1)

The spacetime is composed by some internal degrees of freedom (IDF).
New interpretation of Einstein field Equations (EFE)

2Gab = Tab.

The Padmanabhan’s “ansatz” for entropy: IDF parametrized by lightlike
vectors na normal to H (na ∝ ξa)

S[na] = −
∫
V
d4x
√
−g
[
4Pcd

ab∇cna∇dnb − Tabnanb
]
.

Variational Principle:

δS[na] = −2
∫
V
d4x
√
−g
[
4Pcd

ab∇cna∇dδnb − Tabnaδnb + λ(x)naδnb
]
.

The maximazation must holds for all null vectors na ⇒ condition on gab. The
equations of Motion (EOM) are

Gab =
1
2Tab + Λgab.
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Emergent Gravity: Functional Approach (2)

What do we want from our theory?
- Gravitational field equations must be invariant under the symmetry
transformation of matter sector:

Lmatter → Lmatter + constant ⇒ T a
b → T a

b + (constant)δab;

- The solution to the field equations must allow the cosmological constant to
influence the geometry of the universe;
- Fundamental physical principle to determine the value of the cosmological
constant.

What does the emergent gravity approach give us?

- Thermodynamical functional associated with all null vectors in a given
spacetime.
- Validity of the maximization of the functional for all the null vectors
simultaneously (general covariance) leads to

Gab =
1
2Tab + Λgab

where Λ is a (cosmological) constant naturally arising from the above
procedure.
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Emergent Gravity: a thermodynamic point of view (1)

Equation of motion:
(2Gab − Tab)nanb = 0.

Consider a Rindler observer moving with velocity ua = ξa/N:

1 Amount of matter entropy transfer to H

δSmatt = βlocδE = βlocuaξbTabdVprop = βξaξbTabdVprop.

2 Gravitational entropy measured by the Rindler observer near H

δSgrav = βlocuaJadVprop → β[ξbξa(2Gab) + Rξaξa]dVprop

where Ja is the Noether current for ξa and β−1
loc = N κ

2π .

When ξa → ka
(2Gab − Tab)kakb = 0

The Bianchi identities and the conservation of Tab lead to
2Gab − T ab = λ(x)gab, λ(x) = constant.
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Emergent Gravity: a thermodynamic point of view (2)

a) Matter falling towards the Black Hole
r a → spacelike unit normal to the stretched horizon Σ
Matter entropy flux: βlocTabξ

ar b
Gravitational entropy flux: βloc raJa

When N → 0, Nr a → ξa → ka, then equating the two fluxes we get

(2Gab − Tab)kakb = 0

b) Virtual, infinitesimal displacement of H, ε
Proper volume dVprop = ε

√
σd2x

Local matter entropy: βlocT a
b ξ

bradVprop
Local gravitational entropy: βloc r aJadVprop
δSgrav = βlocξaJadVprop = βlocTabξ

aξbdVprop = δSmatt
When ξa → κλka:

(2Gab − Tab)kakb = 0
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Thermodynamics of Spacetime (1)

Key point: a generic null surface through any event in spacetime acts as a
local Rindler horizon for some observer.

How to build Hilbert-Einstein action from pure thermodynamics arguments:

- Geometry of null hypersurfaces, Rindler observers and Unruh temperature
lead to

2
∫
V

√
hd3xuaJa[ξ] = 2

∫
∂V

√
σd2x
8πL2

P
(Nrαaα) = ε

∫
∂V

√
σd2x
L2
P

(Tloc

2

)
.

- Entropy density s =
√
σ/4L2

P∫
V

√
hd3xuaJa[ξ] = ε

∫
∂V

d2xTs

where Ts is the enthalpy density H/V = E/V + P = Ts when µ = 0.
- Putting together this two results, one obtains

1
2TA = 2TS

where A is the surface area, T = constant on the surface and S = A/4.
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Thermodynamics of Spacetime (2)

New set of coordinates to describe the static spacetime: (t, ~x)→ (t,N, yA)

ADM Metric : ds2 = −N2dt2 + dN2

(Na)2 + σAB(dyA − aAdN
Na2 )(dyB − aBdN

Na2 )

Gravitational entropy: Sgrav = 1
8π
∫
d4x
√
−g∇iai

Gravitational acceleration source (EFE):
1

8π∇iai = (Tab − 1
2gabT )uaub ideal fluid−−−−−→ ρ+ 3P

where ui is the velocity of the observer.
(Internal) Energy measured: U =

∫
V d3x√γN(Tabuaub), Tabuaub = ρ

Free energy (no pressure): βF = βU − S = −S + β
∫
V d3x√γN(Tabuaub)

Using Sgrav , the EFE, the relation R = −8πT and β =
∫ 2π/κ

0 dt, we get

βF =
1

16π

∫
V
d4x
√
−gR
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Thermodynamics of Spacetime (3)
Hamiltonian formalism together with the geometry of null hypersurfaces:
- For a static spacetime in presence of some form of matter near the
hypersurface, the Noether current leads to

∫
∂V

d2x
√
σ

L2
P

(Naαrα

4π

)
=

∫
V

d3xN
√

h(2Tabuaub)

or, equivalently∫
∂V

d2x
√
σ

L2
P

(1
2kBTloc

)
=

∫
V

d3xN
√

h(ρ+ 3p)

- We define

Nsurf =
A
L2
P

=

∫
∂V

√
σd2x
L2
P

, Tavg ≡
1
A

∫
∂V

√
σd2xTloc

- if the energy in the region V has reached equipartition at the average
surface temperature T , then

|E | =
1
2NbulkkBTavg → Nbulk =

ε

(1/2)kBTavg

∫
V

d3xN
√

h(ρ+ 3p)

- Holographic equipartition: comoving observers in any static spacetime will
find Nbulk = Nsurf
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hypersurface, the Noether current leads to∫

∂V

d2x
√
σ

L2
P

(Naαrα

4π

)
=

∫
V

d3xN
√

h(2Tabuaub)

or, equivalently∫
∂V

d2x
√
σ

L2
P

(1
2kBTloc

)
=

∫
V

d3xN
√

h(ρ+ 3p)

- We define

Nsurf =
A
L2
P

=

∫
∂V

√
σd2x
L2
P

, Tavg ≡
1
A

∫
∂V

√
σd2xTloc

- if the energy in the region V has reached equipartition at the average
surface temperature T , then

|E | =
1
2NbulkkBTavg → Nbulk =

ε

(1/2)kBTavg

∫
V

d3xN
√

h(ρ+ 3p)

- Holographic equipartition: comoving observers in any static spacetime will
find Nbulk = Nsurf
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Thermodynamics of Spacetime (4)
For a dynamical spacetime we have

ε

2kBTavg (Nsurf − Nbulk) 6= 0

Without matter
ε

∫
∂V

d2x
√
σ

L2
P

(
1
2kBTloc

)
6= 0

Let’s note that:

- the geometrical quantities emerging from the thermodynamical analysis lead
to the Hilbert-Einstein action (enthalpy);
- the geometrical quantities like tensors and scalars emerge from the dynamics
of null hypersurfaces (Rindler spacetime).

- Basically we have that
′′
H ∝ Ja + T ab′′

↔ H = PV + U
thus the variation of the enthalpy, viz. the Hilbert-Einstein action, leads to

δλH → T δλS = δλE + PδλV .
The minimization of the enthalpy leads to thermodynamical equation
equivalent to the Einstein’s field equations Rab = 8πL2

PTab.
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Fluid Dynamics of Spacetime (1)

Field equations of gravity have the same status as the Damour-Navier-Stokes
equations (DNS): it is true in the case of black hole horizons (Damour 1979).

First generalization: the projection of Einstein equations on to any null
surface in any spacetime leads to DNS equation (and to NS equations in the
freely falling frame).
What does emergent gravity approach teach us? We need a (suitable)
thermodynamical functional whose (suitable) variation directly leads to DNS
equations.

S[na] = −
∫
V
d4x
√
−g
(
4Pcd

ab∇cna∇dnb − Tabnanb
)
.

By using the geometrical dictionary of null hypersurfaces foliating spacetime
and the properties of null vectors defined on them, we can suitably rewrite
this functional as

S[na] = −
∫
V
d4x
√
−g
(
ΘabΘab − κ2 + (θ + κ)2 − Tabnanb

)
where Θab is related to ∇anb, κ is the surface gravity and θ = Θa

a.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 18 / 31



Fluid Dynamics of Spacetime (1)

Field equations of gravity have the same status as the Damour-Navier-Stokes
equations (DNS): it is true in the case of black hole horizons (Damour 1979).
First generalization: the projection of Einstein equations on to any null
surface in any spacetime leads to DNS equation (and to NS equations in the
freely falling frame).

What does emergent gravity approach teach us? We need a (suitable)
thermodynamical functional whose (suitable) variation directly leads to DNS
equations.

S[na] = −
∫
V
d4x
√
−g
(
4Pcd

ab∇cna∇dnb − Tabnanb
)
.

By using the geometrical dictionary of null hypersurfaces foliating spacetime
and the properties of null vectors defined on them, we can suitably rewrite
this functional as

S[na] = −
∫
V
d4x
√
−g
(
ΘabΘab − κ2 + (θ + κ)2 − Tabnanb

)
where Θab is related to ∇anb, κ is the surface gravity and θ = Θa

a.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 18 / 31



Fluid Dynamics of Spacetime (1)

Field equations of gravity have the same status as the Damour-Navier-Stokes
equations (DNS): it is true in the case of black hole horizons (Damour 1979).
First generalization: the projection of Einstein equations on to any null
surface in any spacetime leads to DNS equation (and to NS equations in the
freely falling frame).
What does emergent gravity approach teach us? We need a (suitable)
thermodynamical functional whose (suitable) variation directly leads to DNS
equations.

S[na] = −
∫
V
d4x
√
−g
(
4Pcd

ab∇cna∇dnb − Tabnanb
)
.

By using the geometrical dictionary of null hypersurfaces foliating spacetime
and the properties of null vectors defined on them, we can suitably rewrite
this functional as

S[na] = −
∫
V
d4x
√
−g
(
ΘabΘab − κ2 + (θ + κ)2 − Tabnanb

)
where Θab is related to ∇anb, κ is the surface gravity and θ = Θa

a.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 18 / 31



Fluid Dynamics of Spacetime (1)

Field equations of gravity have the same status as the Damour-Navier-Stokes
equations (DNS): it is true in the case of black hole horizons (Damour 1979).
First generalization: the projection of Einstein equations on to any null
surface in any spacetime leads to DNS equation (and to NS equations in the
freely falling frame).
What does emergent gravity approach teach us? We need a (suitable)
thermodynamical functional whose (suitable) variation directly leads to DNS
equations.

S[na] = −
∫
V
d4x
√
−g
(
4Pcd

ab∇cna∇dnb − Tabnanb
)
.

By using the geometrical dictionary of null hypersurfaces foliating spacetime
and the properties of null vectors defined on them, we can suitably rewrite
this functional as

S[na] = −
∫
V
d4x
√
−g
(
ΘabΘab − κ2 + (θ + κ)2 − Tabnanb

)
where Θab is related to ∇anb, κ is the surface gravity and θ = Θa

a.

Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 18 / 31



Fluid Dynamics of Spacetime (1)

Field equations of gravity have the same status as the Damour-Navier-Stokes
equations (DNS): it is true in the case of black hole horizons (Damour 1979).
First generalization: the projection of Einstein equations on to any null
surface in any spacetime leads to DNS equation (and to NS equations in the
freely falling frame).
What does emergent gravity approach teach us? We need a (suitable)
thermodynamical functional whose (suitable) variation directly leads to DNS
equations.

S[na] = −
∫
V
d4x
√
−g
(
4Pcd

ab∇cna∇dnb − Tabnanb
)
.

By using the geometrical dictionary of null hypersurfaces foliating spacetime
and the properties of null vectors defined on them, we can suitably rewrite
this functional as

S[na] = −
∫
V
d4x
√
−g
(
ΘabΘab − κ2 + (θ + κ)2 − Tabnanb

)
where Θab is related to ∇anb, κ is the surface gravity and θ = Θa

a.
Matteo Tuveri (University of Cagliari and INFN-Ca) The Emergent Gravity Approach Cagliari, 10/03/2016 18 / 31



Fluid Dynamics of Spacetime (2)
We project on to the null surface the EOM arising from the extrimization of
the previous functional (performed w.r.t. the null vectors na) and we find that

qma £lΩm + θΩa − Da

(
κ+

θ

2

)
+ Dmσ

m
a = Tmnlmqna

where £l denotes the Lie derivative along na, σma is related to Θ and θ, Ωm is
similar to Θ, but it takes into account the derivatives of an auxiliary vector
ka.

The extrimization of the entropy functional leads to Einstein equation in
presence of a cosmological constant

Gab =
1
2 (Tab + gabΛ) .

Validity of the DNS equation for a null surface means the validity of the
Einstein equations.
Further algebra allow us to write the time-variation of the fluid-gravitational
action as

1√
−g

dS
dt =

LgravAdλ
8π = −dE + TdSH + PdδA.
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Fluid Dynamics of Spacetime (3)

By choosing an adapted coordinate system , Θ can be written as

ΘAB =
1
2

(
DAvb + DBvA +

∂qAB
∂t

)
qAB does not depend on t−−−−−−−−−−−−−−−−→ σAB

where DA is the covariant derivative, vA is a velocity field, qAB is a two
dimensional metric tensor and σAB is the shear tensor.

In this frame the previous equation becomes the DNS equation:

(∂0+vB∂B)
(ωA
8π

)
+
ωB
8πDAvB+θ

ωA
8π +

1
8πDBσ

B
A−DA

(
κ

8π +
θ

16π

)
= TijniqjA

where −ωA/8π is the momentum density, κ/8π is the pressure, η = 1/16π is
the shear viscosity coefficient, ζ = −1/16π is the bulk viscosity coefficient
and Fj = Tijni is the external force.
In the inertial frame ωA = 0 and the equation becomes the NS equation:

(∂0 + vB∂B)
(
−ωA8π

)
=

1
8π∂Bσ

B
A −

1
16π∂Aθ − ∂A

( κ
8π

)
− TmAnm.

Spacetime fluid dynamics implies dissipation without dissipation!
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A Route to Quantum Gravity (1)

The entropy functional is given as an “ansatz”.

We need a distribution function of atoms of spacetime from which the
thermodynamics of spacetime arises.
The emergent gravity approach has sense in a mesoscopic regime.
Quantum gravity influence on the geodesic interval, σ2, between two events
P and p in spacetime:

σ2 → σ2 + L2
0, L2

0 = µ2L2
P

New geometrical quantity: nonlocal symmetric biscalar, qab(p,P), called
q-metric:

qab(p,P; L2
0) = Agab −

(
A− 1

A

)
nanb

where gab is the classical metric tensor, σ2 = σ2(p,P) is the corresponding
classical geodesic interval and

A[σ; L0] = 1 +
L2

0
σ2 , na =

∇aσ
2

2
√
σ2
.
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A Route to Quantum Gravity (2)

We want to build the Hilbert-Einstein action taking into account the q-metric
analogous to the classical one.

One will obtain an effective Lagrangian, Leff depending on p, P and L2
P . But

the key step is:
Leff = lim

LP→0
lim
p→P
R(p,P; L2

P) ∝ S[na]

or, in other words R(P, LP) 6= R(P). Instead R(p,P; LP = 0) = R(P).
The limits

lim
LP→0

lim
p→P
R(p,P; L2

P) 6= lim
σ2→0

lim
LP→0

R(p,P; L2
P)

do not coincide. According to the regularization techniques we have to take
the first limit as the wright one.
Putting together this argument with the thermodynamical ones previous
seen, one finds that the density of atoms of spacetime (distribution function)
is given by

f (x i , na) ≡ 1− 1
6L

2
0Rabnanb.
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Summary and Outlook
The emergent gravity approach opens a new window into the study of
intrinsic properties of spacetime: “if you can heat something, it has a
microstructure”.

Spacetime is composed by some “atoms of spacetime” which can be
parametrized by null vectors. The metric is no longer the fundamental
dynamical quantity to study the properties of spacetime.
The dynamics of this atoms follow some equation which has the same form
of Einstein equations (with or without matter).
Gravitational field equations arise from the variation of suitable
thermodynamical functional and they also include a cosmological constant,
with a fixed value.
The geometric structure of spacetime shows that its thermodynamical
properties are the same as the ones of a dissipative fluid (“dissipation without
dissipation”).
The entropy ansatz finds its mathematical foundation in a mesoscopic regime
in which one can define non-local geometrical quantities having quantum
properties.
We can also find how this “atoms” are distributed in a renormalized
spacetime with a zero-point lenght.
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Thanks for the Attention!
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Black Hole Entropy from Conserved Quantities
1 Given a covariant theory, the dynamical black hole gravitational entropy is:

Sgrav =

∫
H
Jabεab.

The Noether current Ja = ∇bJab defines the Noether Charge Jab.
2 In GR, the Noether current is

Ja = [2Gabξb + Rξa + v aξ ]

3 No matter: on-shell, the gravitational entropy is

Sgrav = −
∫
V
d4x
√
−g
[
4Pcd

ab∇cξ
a∇dξ

b] .
4 With matter: 2Gab = Tab. When ξ is a Killing vector field, the matter

entropy is
Smat =

∫
V
d4x
√
−gTabξ

aξb.

5 Speci f result: ξa → Killing vector field, H → bifurcate Killing horizon
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Black Hole Entropy from Conserved Quantities (1)

Consider the Hilbert-Einstein action

AHE =

∫
V
d4x
√
−gR =

∫
V
d4x
√
−ggabRab

Consequence of the variational principle

δAHE
δgab

= 0→ d4x
√
−g
[
1
2g

abR − Rab + gabδRab

]
= 0

gabδRab = ∇av a = ∇a[2(Pcabd − Pcbad)∇cδgdb]

Invariance for diffeomorphism: xa → xa + ξa ⇒ Noether Current, Ja

Ja = [2Gabξb + Rξa + v aξ ] = 2Rabξb + v aξ
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Black Hole Entropy from Conserved Quantities (2)

a) ON-SHELL: 2Gab = 0⇒ 2Rabξb = Rξa

Ja = ∇b(∇aξb −∇bξa) = ∇bJab → Jab = 2∇aξb

Jab is the Noether Charge or the Superpotential
b) No surface term v aξ = 0, but with 2Gab = T ab

Ja = (T ab + gabR)ξb

kaξa = 0, kaka = 0: energy flux → kaJa = T abkaξb
c) First Law of Black Hole Thermodynamics

Sgrav =
β

2

∫
H
dΣabJab =

1
4

∫
H
d2x
√
σ =

1
4AH
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Black Hole Entropy from Conserved Quantities (3)

− Matter entropy Smatt = β
∫
V d3x

√
hkaT abξb

− Gravitational entropy: Sgrav ⇔ Ja

Ja = ∇b(∇aξb −∇bξa) = 4Pab
cd∇c∇dξb

Jab = ∇c [4Pab
cd∇dξb]

− On H, ξa → Nna and na becomes a null vector. So an integration by part
and the condition ∇cPcd

ab = 0 lead to

Sgrav = −4
∫
V
d4x
√
−g [Pcd

ab∇cna∇dnb −∇c(4Pcd
ab na∇dnb)]

and
Smatt =

∫
V
d4x
√
−gTabnanb

When ξa → ka it’s necessary to introduce βloc = βN.
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