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• Discussion is limited to the self-similarity property∗ of deterministic†

fractals and logarithmic spiral.

Self-similarity properties of fractal structures and logarithmic spiral

are related to

- squeezed coherent states

- quantum dissipative dynamics

- noncommutative geometry in the plane

• Not discussing: the measure of lengths in fractals, random fractals,

etc.

∗the most important property of fractals! p. 150 of Peitgen, H.O., Jürgens, H.,
Saupe, D.: Chaos and fractals. New Frontiers of Science. Springer-Verlag, Berlin
(1986)

†the ones generated iteratively according to a prescribed recipe.
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Consider the example of the Koch curve (Helge von Koch, 1904) ∗

Notice:

Koch was searching an example of curve everywhere non-differentiable

(“On a continuous curve without tangents, constructible from ele-

mentary geometry”)

∗Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and fractals. New Frontiers of
Science. Springer-Verlag, Berlin (1986)

G.Vitiello, New Mathematics and Natural Computation 5, 245-264 (2009);

Quantum Interaction. Third Int. Symposium (QI-2009). Saarbruecken, Germany,
Eds. P. Bruza, D. Sofge, et al. LNAI 5494, 6 (Springer 2009)
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By generalizing and extending this to the case of any other “ipervolume” H one
considers thus the ratio

H(λL0)
H(L0)

= p , (2.2)

and assuming that Eq. (2.1) is still valid “by definition”, one obtains

p H(L0) = λdH(L0) , (2.3)

i.e. p = λd. For the Koch curve, setting α = 1
p = 4 and q = λd = 1

3d , p = λd gives

qα = 1 , where α = 4, q =
1
3d

, (2.4)

i.e.

d =
ln 4
ln 3

≈ 1.2619 . (2.5)

d is called the fractal dimension, or the self-similarity dimension 50.

Fig. 1. The first five stages of Koch curve.

With reference to the Koch curve, I observe that the meaning of Eq. (2.3) is that
in the “deformed space”, to which u1,q belongs, the set of four segments of which
u1,q is made “equals” (is equivalent to) the three segments of which u0 is made in



• Stage n = 0: L0 = u0 (arbitrary initiator) it lives in 1 dimension

• Stage n = 1: u1,q(α) ≡ q αu0, q =
1

3d
, α = 4 (the generator)

d ̸= 1 to be determined. it does not live in 1 dimension.

The “deformation” of the u0 segment is only possible provided the

one dimensional constraint d = 1 is relaxed.

The u1 segment “shape” lives in some d ̸= 1

d ̸= 1 is a measure of the deformation of the dimensionality



• Stage n = 2: u2,q(α) ≡ q αu1,q(α) = (q α)2 u0.

• By iteration:

un,q(α) ≡ (q α)un−1,q(α), n = 1,2,3, ...

un,q(α) = (q α)n u0.

which is the “self-similarity” relation characterizing fractals.

Notice! The fractal is mathematically defined only in the limit of

infinite number of iterations (n→ ∞).



Normalizing, at each stage, with (arbitrary) u0:

un,q(α)

u0
= (q α)n = 1, for each n

i.e.

d =
ln 4

ln 3
≈ 1.2619.

The non-integer d is called

fractal dimension , or self-similarity dimension .

Note that q α = 1, i.e. 1

3d
4 = 1 is not true for d = 1, i.e. if one remains

in d = 1 dimension

The value of d, fractal dimension, is a measure of the deformation

which allows to impose the “constraint”
un,q(α)
u0

= 1 = (q α)n.



Now consider in full generality the complex α-plane.

The functions

un,q(α) =
(q α)n√

n!
, u0(α) = 1 , q = ed θ , θ ∈ C α ∈ C , n ∈ N+ ,

form in the space F of the entire analytic functions (i.e. uniformly

converging in any compact domain of the α-plane) a basis which is

orthonormal.

The factor 1√
n!

ensures the normalization condition with respect to

the gaussian measure.



Consider the finite difference operator Dq, also called the q-derivative

operator:

Dqf(α) =
f(qα)− f(α)

(q − 1)α
,

with f(α) ∈ F , q = eζ , ζ ∈ C.

Dq reduces to the standard derivative for q → 1 (ζ → 0).

In the space F, the commutation relations hold:

[Dq, α] = qα
d
dα ,

[
α
d

dα
,Dq

]
= −Dq ,

[
α
d

dα
, α

]
= α , (1)

which lead us to the identification

N → α
d

dα
, âq → α , aq → Dq ,

with âq = âq=1 = a† and limq→1 aq = a on F.

This algebra is the q-deformation of the WH algebra.



The operator qN acts in the whole F as

qNf(α) = f(qα) , f(α) ∈ F .

For the coherent state functional

|α⟩ = exp(−
|α|2

2
)

∞∑
n=0

αn√
n!

|n⟩ = exp(−
|α|2

2
)

∞∑
n=0

un(α)|n⟩,

we have∥

qN |α⟩ = |qα⟩ = exp(−
|qα|2

2
)

∞∑
n=0

(qα)n√
n!

|n⟩ ,

and, since qα ∈ C,

a |qα⟩ = qα |qα⟩ , qα ∈ C .

∥E. Celeghini, S. De Martino, S. De Siena, M. Rasetti and G. Vitiello, Quantum
groups, coherent states, squeezing and lattice quantum mechanics, Ann. Phys.
241, 50 (1995).
E. Celeghini, M. Rasetti and G. Vitiello, On squeezing and quantum groups, Phys.
Rev. Lett. 66, 2056 (1991).



Notice! 1√
n!
(q α)n

is the “deformed” basis in F, where coherent states are represented.

The link between fractals and coherent states is established by re-

alizing that the fractal nth-stage function un,q(α), with u0 set equal

to 1, is obtained by projecting out the nth component of |qα⟩ and

restricting to real qα, qα→ Re(qα):

⟨qα|(a)n|qα⟩ = (qα)n = un,q(α), qα→ Re(qα).

The operator (a)n thus acts as a “magnifying” lens: the nth iteration

of the fractal can be “seen” by applying (a)n to |qα⟩.



Note that “the fractal operator” qN can be realized in F as:

qNψ(α) =
1
√
q
ψs(α) ,

where q = eζ (for simplicity, assumed to be real) and ψs(α) denotes

the squeezed states in FBR.

qN acts in F as the squeezing operator Ŝ(ζ) (well known in quantum

optics) up to the numerical factor 1√
q.

ζ = ln q is called the squeezing parameter.

The q-deformation process, which we have seen is associated to the

fractal generation process, is equivalent to the squeezing transforma-

tion.



These results can be extended also to the logarithmic spiral. Its

defining equation in polar coordinates (r, θ) is

r = r0 e
d θ , (2)

with r0 and d arbitrary real constants and r0 > 0, whose representation

is the straight line of slope d in a log-log plot with abscissa θ = ln eθ:

d θ = ln
r

r0
. (3)

The constancy of the angular coefficient tan
−1 d signals the self-

similarity property of the logarithmic spiral: rescaling θ → n θ affects

r/r0 by the power (r/r0)
n. Thus, we may proceed again like in the

Koch curve case and show the relation to squeezed coherent states.

(cf. with the Koch curve case: (q α)n = 1, with q = e−d θ, is written as

d θ = ln α)
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FIG. 2: The anti-clockwise and the clockwise logarithmic spiral.

with r0 and d arbitrary real constants and r0 > 0, whose representation is the straight line of slope d in a log-log plot
with abscissa θ = ln eθ:

d θ = ln
r

r0
. (8)

The constancy of the angular coefficient tan−1 d signals the self-similarity property of the logarithmic spiral: rescaling
θ → n θ affects r/r0 by the power (r/r0)

n. Thus, we may proceed again like in the Koch curve case and show the
relation to squeezed coherent states. The result also holds for the specific form of the logarithmic spiral called the
golden spiral (see Appendix A). The golden spiral and its relation to the Fibonacci progression is of great interest
since the Fibonacci progression appears in many phenomena, ranging from botany to physiological and functional
properties in living systems, as the “natural” expression in which they manifest themselves. Even in linguistics, some
phenomena have shown Fibonacci progressions [14].
As customary, let in Eq. (7) the anti-clockwise angles θ’s be taken to be positive. The anti-clockwise versus (left-

handed) spiral has q ≡ ed θ > 1; the clockwise versus (right-handed) spiral has q < 1 (see Fig. 2); sometimes they are
called the direct and indirect spiral, respectively.
In the next Section we consider the parametric equations of the spiral:

x = r(θ) cos θ = r0 e
d θ cos θ , (9a)

y = r(θ) sin θ = r0 e
d θ sin θ . (9b)

III. SELF-SIMILARITY, DISSIPATION AND SQUEEZED COHERENT STATES

According to Eqs. (9), the point on the logarithmic spiral in the complex z-plane is given by

z = x+ i y = r0 e
d θ ei θ , (10)

The point z is fully specified only when the sign of d θ is assigned. The factor q = ed θ may denote indeed one of
the two components of the (hyperbolic) basis {e− d θ, e+ d θ}. Due to the completeness of the basis, both the factors
e± d θ must be considered. It is indeed interesting that in nature in many instances the direct (q > 1) and the indirect
(q < 1) spirals are both realized in the same system (perhaps the most well known systems where this happens are
found in phyllotaxis studies). The points z1 and z2 are then considered:

z1 = r0 e
− d θ e− i θ , z2 = r0 e

+ d θ e+ i θ , (11)

where for convenience (see below) opposite signs for the imaginary exponent i θ have been chosen. By using the
parametrization θ = θ(t), z1 and z2 are easily shown to solve the equations

m z̈1 + γ ż1 + κ z1 = 0 , (12a)

m z̈2 − γ ż2 + κ z2 = 0 , (12b)

respectively, provided the relation

θ(t) =
γ

2md
t =

Γ

d
t (13)



The parametric equations of the spiral are:

x = r(θ) cos θ = r0 e
d θ

cos θ ,

y = r(θ) sin θ = r0 e
d θ

sin θ . (4)

In the complex z-plane

z = x+ i y = r0 e
d θ ei θ , (5)

the point z is fully specified only when the sign of d θ is assigned. The

factor q = ed θ may denote indeed one of the two components of the

(hyperbolic) basis {e− d θ, e+ d θ}.

Due to the completeness of the basis, both the factors e± d θ must be

considered.

It is interesting that in nature in many instances the direct (q > 1) and

the indirect (q < 1) spirals are both realized in the same system (the

most well known systems where this happens are found in phyllotaxis

studies).



 



 



The points z1 and z2 are considered:

z1 = r0 e
− d θ e− i θ , z2 = r0 e

+ d θ e+ i θ , (6)

By using the parametrization θ = θ(t), z1 and z2 solve the equations

mz̈1 + γ ż1 + κ z1 = 0 ,

m z̈2 − γ ż2 + κ z2 = 0 , (7)

respectively, provided the relation

θ(t) =
γ

2md
t =

Γ

d
t (8)

holds (up to an arbitrary additive constant c set equal to zero). m, γ

and κ positive real constants. Γ ≡ γ
2m. Then,

z1(t) = r0 e
− iΩ t e−Γt , z2(t) = r0 e

+ iΩ t e+Γ t , (9)

with Ω
2
=

1

m(κ− γ2

4m) =
Γ
2

d2
, κ > γ2

4m .

One can interpret the parameter t as the time parameter.



Time-evolution of the system of direct and indirect spirals is described

by the system of damped and amplified harmonic oscillator equations.

Oscillator z1 is an open non-hamiltonian system. In order to set up

the canonical formalism the closed system (z1, z2), made by z1 and its

time-reversed image z2, must be considered∗∗.

The “two copies” (z1, z2) viewed as describing the forward and the

backward in time path in the phase space {z, pz}, respectively.

As far as z1(t) 6= z2(t) the system exhibits quantum behavior and

quantum interference takes place††

∗∗E. Celeghini, M. Rasetti and G. Vitiello, Annals of Physics(N.Y.) 215, 156 (1992).
††J. Schwinger, J. Math. Phys. 2, 407 (1961).
G. ’t Hooft, Class. Quant. Grav. 16, 3263 (1999); J. Phys.: Conf. Series 67,
012015 (2007).
M. Blasone, P. Jizba, G. Vitiello, Phys. Lett. A 287, 205 (2001).
M. Blasone, E. Celeghini, P. Jizba, G. Vitiello, Phys. Lett. A 310, 393 (2003).



The ground state |0(t)⟩ for the closed system {z1, z2} is found to be

an SU(1,1) generalized (squeezed) coherent state.

It is a thermal state and its time evolution is controlled by the entropy

operator:

|0(t)⟩ = exp

(
−
1

2
SA(t)

)
exp

(
A†B†

)
|0⟩ = exp

(
−
1

2
SB(t)

)
exp

(
A†B†

)
|0⟩ .

SA(t) and SB(t) have the same formal expressions (with B and B†

replacing A and A†):

SA(t) ≡ −{A†A ln sinh
2
(Γt)−AA†

ln cosh
2
(Γt)} . (10)

Since A’s and B’s commute, S denotes either SA or SB.

S is the entropy for the dissipative system.



Time evolution controlled by S → breaking of time-reversal symmetry

→ choice of a privileged direction in time evolution (time arrow).

The breakdown of time-reversal symmetry characteristic of dissipation

is manifest in the formation process of fractals;

in the case of the logarithmic spiral the breakdown of time-reversal

symmetry is associated with the chirality of the spiral: the indirect

(right-handed) spiral is the time-reversed, but distinct, image of the

direct (left-handed) spiral.

The Hamiltonian H turns out to be the fractal free energy for the co-

herent boson condensation process out of which the fractal is formed.



The time-evolution operator U(t) can be written as

U(t) = exp

(
−
Γt

2
((a2 − a†2)− (b2 − b†2))

)
,

in terms of a and b operators (related to A and B by a canonical trans-

formation). U(t) is the two mode squeezing generator with squeezing

parameter ζ = −Γ t.

|0(t)⟩ is thus a squeezed state.

We can repeat the construction also for the Koch curve.

For simplicity the problem has been tackled within the framework of

quantum mechanics. The correct mathematical framework to study

quantum dissipation is the one of quantum field theory (QFT), where

one considers an infinite number of degrees of freedom.

This is also physically more realistic, because the realizations of the

logarithmic spiral (and in general of fractals) in the many cases it is

observed in nature involve an infinite number of elementary degrees

of freedom.



The logarithmic spiral and its time-reversed double manifest them-

selves as macroscopic quantum systems.

Same conclusion holds for the Koch curve and other fractals.



We know that the quantum interference phase ϑ (of the Aharanov-

Bohm type) between two alternative paths P1 and P2 in the plane is

determined by the noncommutative deformation parameter q and the

enclosed area A : ϑ = A/q2∗∗.

In the (z1, z2) plane, introduce for simplicity the index notation + ≡ 1

and − ≡ 2. The forward in time and backward in time velocities

v± = ż± are given by

v± =
1

m
(pz∓ ∓

1

2
γz±) (11)

and they do not commute

[v+, v−] = −i
γ

m2
. (12)

∗∗Sivasubramanian, S., Srivastava, Y.N., Vitiello, G., Widom, A., Phys. Lett. A
311, 97–105 (2003)
Blasone, M., Jizba, P., Vitiello, G.: Quantum Field Theory and its macroscopic
manifestations. Imperial College Press, London (2011)



Define the conjugate position coordinates ξ± ≡ ∓(m/γ)v±, then[
ξ+, ξ−

]
= i

1

γ
, (13)

which characterizes the noncommutative geometry in the plane (z+, z−).

The quantum dissipative interference phase ϑ associated with the two

paths P1 and P2 in the noncommutative plane is ϑ = A γ, provided

z+ ̸= z−.

The “dissipative interference phase” provides a relation between dis-

sipation and noncommutative geometry in the plane of the doubled

coordinates.



Remark: the noncommutative q-deformed Hopf algebra plays a rele-

vant rôle in the formalism of the algebra doubling.

The map A → A1 ⊗ A2 which duplicates the algebra is the Hopf co-

product map A → A⊗ 1+ 1⊗A.

The deformed coproduct maps ∆a
†
q = a

†
q ⊗ q1/2 + q−1/2 ⊗ a

†
q (a

†
q are the

creation operators in the q-deformed Hopf algebra) are noncommu-

tative and the q-deformation parameter is related to the coherent

condensate content of the state |0(t)⟩.



Energy-momentum conservation in electrodynamics

In classical electrodynamics, as well as in quantum electrodynamics:

the conservation of the electromagnetic (em) energy-momentum ten-

sor Tµν

∂µT
µν

= 0, (1)

closed system {ψ,Aµ}, made of the matter field ψ and of the em gauge

field Aµ.



However, the conservation arises from the compensation between the

matter part T
µν
m and the em part T

µν
γ of the total Tµν:

∂µT
µν
m = e FανJα (2)

∂µT
µν
γ = −e FανJα (3)

where Jα denotes the current, e is the charge and as usual Fαβ =

∂βAα − ∂αAβ

no need to specify the boson or fermion nature of ψ(x).



Volume integration gives for ν = 0 the rate of changes in time of the

energy of the matter field and em field, Em and Eγ, respectively:

∂0Em = eE · v = −∂0Eγ

For ν = i = 1,2,3, integration over the volume gives

∂0P
i
m = eEi+ e (v ×B)

i
(4)

∂0P
i
γ = −eEi − e (v ×B)

i
(5)

namely, the Lorentz forces Fm and Fγ, acting on two opposite charges

with same velocity v in the same electric and magnetic fields, E and

B, respectively.



Let, at least in some space-time region, the magnetic field B be a

constant vector, thus described by the vector potential

A =
1

2
B× r

where r = (x1, x2, x3). It is B = ∇×A, ∇ ·A = 0.

Choose the reference frame so that B = ∇×A = −B3̂ . Then, A3 = 0

and by using ϵ12 = −ϵ21 = 1; ϵii = 0,

Ai =
B

2
ϵijxj , i, j = 1,2.

The third component, i = 3, of (v ×B) vanishes.

Assume also that E is given by the gradient of the harmonic potential

Φ ≡ k
2e(x1

2 − x2
2
) ≡ Φ1 −Φ2 , E = −∇Φ; and E3 = 0.

We may thus limit our analysis to the i = 1,2 components.



Then let i = 1 and put B ≡ γ/e. We have

mẍ1 + γẋ2 + kx1 = 0

m, γ and k are time independent quantities. For i = 2:

mẍ2 + γẋ1 + kx2 = 0

The Hamiltonian is

H = H1 −H2 =
1

2m
(p1 − e1A1)

2
+ e1Φ1 −

1

2m
(p2 + e2A2)

2
+ e2Φ2

In the least energy state (where H = 0, H1 = H2) the respective

contributions to the energy compensate each other.

One of the oscillators may be considered to represent the em field in

which the other one is embedded and vice-versa.



In summary, the system of damped/amplified oscillators provides, un-

der the conditions specified above, a representation of the content of

Maxwell equations and the associated conservation laws.



The quantum field theory framework

the damped/amplified oscillators have a quantum representation in

terms of squeezed SU(1,1) coherent states.

Thus, the isomorphism between SU(1,1) coherent states and electro-

dynamics is also established.



Conclusions and outlook

A link is established between electrodynamics, self-similarity and co-

herent states in QFT.

In space-time regions where the magnetic field may be approximated

to be constant and the electric field is derivable from a harmonic

potential, an isomorphism has been recognized to exist between elec-

trodynamics and a set of damped and amplified oscillators, which are

represented by SU(1,1) squeezed (q-deformed) coherent states and

are in turn isomorph to fractal self-similar structures.

Dissipation plays a central role and is at the origin of noncommutative

geometry in the plane and is described by the deformed Hopf algebra.

3



Fractal-like structures with self-similarity properties appear as macro-

scopic quantum systems generated by coherent SU(1,1) quantum con-

densation processes at the microscopic level.

Fractals emerge out of a process of morphogenesis (forms) as the

macroscopic manifestation of the dissipative, coherent quantum dy-

namics at the elementary level.



An integrated vision of Nature based on the dynamics of coherence

thus emerges.

It includes also the sector of high energy physics, with the coherent

condensate structure of the vacuum and the recent discovery of the

Higgs boson belongs to such a picture.

Nature appears to be shaped by coherence, rather than being orga-

nized in isolated compartments, in collections of isolated systems.

The dynamics of coherence appears to be the primordial origin of

codes. These are lifted from the (syntactic) level of pure information

(à la Shannon) to the (semantic) level of meanings, expressions of

coherent dynamical processes.

Codes, (including the genetic DNA code) appear to be the vehicles

through which coherence propagate and manifest itself.



Figure 11. Evidence is summarized showing that the mesoscopic background activity conforms to
scale-free, low-dimensional noise [Freeman et al., 2008]. Engagement of the brain in perception and other
goal-directed behaviors is accompanied by departures from randomness upon the emergence of order (A),
as shown by comparing PSD in sleep, which conforms to black noise, vs. PSD in an aroused state showing
excess power in the theta (3 − 7 Hz) and gamma (25 − 100 Hz) ranges. B. The distributions of time
intervals between null spikes of brown noise and sleep ECoG are superimposed. C,D. The distributions
are compared of log10 analytic power from noise and ECoG. Hypothetically the threshold for triggering
a phase transition is 10−4 down from modal analytic power. From [Freeman, O’Nuillain and Rodriguez,
2008 and Freeman and Zhai, 2009]

last long enough to transmit 3 to 5 cycles of the carrier frequency [Freeman, 2005], and they
also have the long correlation distances needed to span vast areas of primary sensory cortices.
These attributes of size and persistence make them prime candidates for the neural correlates
of retrieved memories.

The PSD of background noise from mutual excitation and dendritic integration contain all
frequencies in a continuous distribution, which is necessary to support the appearance of beats
in every designated pass band. Endogenous inhibitory negative feedback does not break this
scale-free symmetry. Explicit breaking of symmetry (Mode 1) can occur by applying electric
shocks that cause excitatory or inhibitory bias and initiate the band limited perturbations that
are observed in the impulse responses (Fig. 7). Spontaneous symmetry breaking (Mode 2) can
occur by a null spike. When that happens, the sensory input that activates a Hebbian assembly
already formed by learning introduces into the broken symmetry a powerful narrow-band gamma
burst (Fig. 8) that is facilitated by the increased synaptic gain, kee, with learning (Fig. 1), the
increased control parameter, Qm, with arousal, and the asymmetric gain around the operating
point for the KII set (Fig. 6).

The crucial step in perception is the phase transition from the excited microscopic assembly
to the large-scale mesoscopic AM pattern. That possibility occurs when a null spike (Fig. 10,
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Quantum Field Theory and its Macroscopic Manifestations
Boson Condensation, Ordered Patterns and Topological Defects

”Physicists believe quantum fields to be the true protagonists of nature in the full variety of its 
wonderful, manifold manifestations. Quantum field theory is the tool they created to fulfill their 
visionary dream of describing with a universal, unique language all of nature, be it single particles 
or condensed matter, fields or many-body objects.

This is perhaps the first book on quantum field theory whose aim is to grasp and describe with 
rigor and completeness, but at the same time in a compelling, fascinating way, all the facets of 
the complex challenge it faces scientists with. It is a book that presents solutions but poses 
questions as well; hard, demanding yet fascinating; a book that can at the same time be used as 
a textbook and as a book of dreams that any scientist would like to make come true.”

Mario Rasetti
Dipartimento di Fisica, Politecnico di Torino, Torino, Italy

“This remarkable book dispels the common misconception that quantum field theory is ‘just 
quantum mechanics with an infinite number of degrees of freedom’, revealing vast new 
mathematical terrains, and new ways of understanding physical phenomena in both commonplace 
and exotic systems.

Uniquely valuable, and covering material difficult or impossible to find coherently assembled 
elsewhere, it will be welcomed by students and researchers in all fields of physics and mathematics.”

John Swain
Physics Department, Northeastern University, Boston, MA, USA

and CERN, Geneva, Switzerland

“This book gives an overall presentation of the most important aspects of quantum field theory, 
leading to its macroscopic manifestations, as in the formation of ordered structures. The list of 
topics, all covered in full detail and easy-to-follow steps, is really impressive.

The main features of the presentation rely on very simple and powerful unifying principles, given 
by the intermixing of symmetry and dynamics, under the general texture of quantum coherence. 
Most of the chapters share the typical flavor of the very intense personal research carried out by 
the authors over many years, but the style of presentation is always perfectly coherent, and all 
topics are presented in a mature and well-organized way.

I think that the book will be most useful for graduate students who are willing to be engaged in 
the fascinating task of exploring the full potentiality of quantum field theory in explaining the 
emergence of ordering at the macroscopic level, from the large-scale structure of the universe, 
to the ordering of biological systems. Of course, active researchers in all formation stages, and 
even mature scientists, will appreciate the intellectual depth and the scientific efficacy that the 
authors have transfused in their work.”

Francesco Guerra
Dipartimento di Fisica, Università di Roma, “La Sapienza”, Italy

“This book gives a very thorough treatment of a range of topics that are of increasing importance,
from a rather unusual, and very instructive, point of view.”

Tom W. Kibble
Theoretical Physics, Imperial College London, London, UK
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