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e Discussion is limited to the self-similarity property* of deterministic’
fractals and logarithmic spiral.

Self-similarity properties of fractal structures and logarithmic spiral
are related to

- squeezed coherent states
- quantum dissipative dynamics
- honcommutative geometry in the plane

e Not discussing: the measure of lengths in fractals, random fractals,
etc.

*the most important property of fractals! p. 150 of Peitgen, H.O., Jurgens, H.,
Saupe, D.: Chaos and fractals. New Frontiers of Science. Springer-Verlag, Berlin
(1986)

fthe ones generated iteratively according to a prescribed recipe.



Consider the example of the Koch curve (Helge von Koch, 1904) *

Notice:

Koch was searching an example of curve everywhere non-differentiable
(“On a continuous curve without tangents, constructible from ele-
mentary geometry”)

*Peitgen, H.O., Jurgens, H., Saupe, D.: Chaos and fractals. New Frontiers of
Science. Springer-Verlag, Berlin (1986)

G.Vitiello, New Mathematics and Natural Computation 5, 245-264 (2009);

Quantum Interaction. Third Int. Symposium (QI-2009). Saarbruecken, Germany,
Eds. P. Bruza, D. Sofge, et al. LNAI 5494, 6 (Springer 2009)
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Fig. 1. The first five stages of Koch curve.



e Stage n = 0: Lo = ug (arbitrary initiator) it lives in 1 dimension
e Stage n =1: ui g(@) =qaug, q= %, a=4 (the generator)

d #*= 1 to be determined. it does not live in 1 dimension.

The “deformation” of the ug segment is only possible provided the
one dimensional constraint d = 1 is relaxed.

The uv1 segment “shape’” lives in some d =1

d = 1 is a measure of the deformation of the dimensionality



e Stage n = 2: up o(a) = qauy 4(a) = (q )2 up.

e By iteration:

un,Q(a) — ((]Oé) un—l,q(“)a n — 172737

un,qg(a) = (ga)" ug.
which is the “self-similarity” relation characterizing fractals.

Notice! The fractal is mathematically defined only in the limit of
infinite number of iterations (n — o).



Normalizing, at each stage, with (arbitrary) ug:
un.q(@) _ (ga)* =1, for each n
uQ
i.e.

N4 ~1.26109.
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The non-integer d is called
fractal dimension , or self-similarity dimension .

Note that qa =1, i.e. %4 — 1 is not true for d = 1, i.e. if one remains
iIn d =1 dimension

The value of d, fractal dimension, IS a measure of the deformation
which allows to impose the ‘“constraint” “”’uq—g") = 1= (qa)".



Now consider in full generality the complex a-plane.

T he functions
(ga)™

’Ufn,q(a) — \/m 3
form in the space F of the entire analytic functions (i.e. uniformly
converging in any compact domain of the a-plane) a basis which is
orthonormal.

The factor - ensures the normalization condition with respect to

. vn!
the gaussian measure.

ug(a) =1, g=¢e%? 6eC aeC, necNg ,




Consider the finite difference operator Dy, also called the g-derivative
operator:

flga) — f(a)
(¢g—Da

qu(@) —

with f(a) e F,qg=¢€, ¢ € C.
D, reduces to the standard derivative for ¢ — 1 (¢ — 0).

In the space F, the commutation relations hold:

d d d
[DQ7a] — qada ) [CX@,Dq] — —Dq ) [O‘£7O‘] — (1)

which lead us to the identification

d _
N_>Oéd— . a,q_>(){ . a,q_>Dq,
o

with G, =ad,—1 =a' and lim,,;a;=a on F.
This algebra is the g-deformation of the WH algebra.



The operator qN acts in the whole F as

" f(a) = f(qa) , f(a) e F.

For the coherent state functional
| |

) = exp(—120) Z r'” = exp(—%) Y un(@)ln),
n=0

we havel

and, since ga € C,
a |ga) = qa |qa) , qa € C .

IE. Celeghini, S. De Martino, S. De Siena, M. Rasetti and G. Vitiello, Quantum
groups, coherent states, squeezing and lattice quantum mechanics, Ann. Phys.
241, 50 (1995).

E. Celeghini, M. Rasetti and G. Vitiello, On squeezing and quantum groups, Phys.
Rev. Lett. 66, 2056 (1991).



Notice! V%T(q a)n

IS the “deformed” basis in F, where coherent states are represented.

The link between fractals and coherent states is established by re-
alizing that the fractal nth-stage function u,,(a), with ug set equal
to 1, is obtained by projecting out the nth component of |ga) and
restricting to real gqa, gqa — Re(qo):

(gal(a)"]qa) = (qa)" = unq(a), qa — Re(qa).

The operator (a)™ thus acts as a “magnifying” lens: the nth iteration
of the fractal can be “seen” by applying (a)” to |qa).



Note that “the fractal operator” ¢ can be realized in F as:
1
N
g Y(a) = —¢s(a) ,
Va

where ¢ = ¢¢ (for simplicity, assumed to be real) and s(a) denotes
the squeezed states in FBR.

¢V acts in F as the squeezing operator S(¢) (well known in quantum

optics) up to the numerical factor 1

Va4
¢ =Inq iIs called the squeezing parameter.
The g-deformation process, which we have seen is associated to the

fractal generation process, is equivalent to the squeezing transforma-
tion.



These results can be extended also to the logarithmic spiral. Its
defining equation in polar coordinates (r,0) is

r=rge??, (2)

with rg and d arbitrary real constants and rg > 0, whose representation
IS the straight line of slope d in a log-log plot with abscissa 6 = In el
d6 =1n—_— . (3)

T0
The constancy of the angular coefficient tan—1d signals the self-
similarity property of the logarithmic spiral: rescaling 0 — n6 affects

r/ro by the power (r/rg)"™. Thus, we may proceed again like in the
Koch curve case and show the relation to squeezed coherent states.

(cf. with the Koch curve case: (¢ga)® =1, with ¢ = ¢ 99, is written as
d0 = In «)



/”'{___ __\ ____uh"\

. N
D) )N
[ @) | | (’@“\
| =/ \ JJ
" \

FIG. 2: The anti-clockwise and the clockwise logarithmic spiral.



The parametric equations of the spiral are:
do

xr = r(0) cosfd =rge®’ cosb ,
y = r(0)sind =rg e? sing . (4)
In the complex z-plane
zzzz;—l—iyzrgedeew, (5)

the point z is fully specified only when the sign of d0 is assigned. The
factor g = e?? may denote indeed one of the two components of the
(hyperbolic) basis {40 et d0},

Due to the completeness of the basis, both the factors et 2’ must be
considered.

It is interesting that in nature in many instances the direct (¢ > 1) and
the indirect (q < 1) spirals are both realized in the same system (the
most well known systems where this happens are found in phyllotaxis
studies).









The points z; and 2z, are considered:

—d@e—iﬁ —|—d0€—|—i9 , (6)

By using the parametrization 6 = 6(¢), z; and z, solve the equations

21 — Tpe€ y 22 — Tpe€

mziy + vz + kzy = 0,
mzp — vz + kzo = 0, (7)
respectively, provided the relation
Y [
0(t) = —t = —1t 38
(t) 2md d (&)

holds (up to an arbitrary additive constant ¢ set equal to zero). m, v
and x positive real constants. ' =-... Then,

— 2m
21(t) =rg e et 2o(t) =rg et et (9)
. 2 1 ,72 . |—2 ,72
with Q2 —m(lﬁ)—m)—d—Q, /ﬁ?>m.

One can interpret the parameter ¢ as the time parameter.



Time-evolution of the system of direct and indirect spirals is described
by the system of damped and amplified harmonic oscillator equations.

Oscillator z; is an open non-hamiltonian system. In order to set up
the canonical formalism the closed system (21, 20), made by z; and its
time-reversed image z>, must be considered**.

The “two copies” (z1, zo) viewed as describing the forward and the
backward in time path in the phase space {z,p.}, respectively.

As far as z1(t) #= 2»(t) the system exhibits quantum behavior and
quantum interference takes place’f

*E. Celeghini, M. Rasetti and G. Vitiello, Annals of Physics(N.Y.) 215, 156 (1992).

fTJ. Schwinger, J. Math. Phys. 2, 407 (1961).
G. 't Hooft, Class. Quant. Grav. 16, 3263 (1999); J. Phys.: Conf. Series 67,
012015 (2007).
M. Blasone, P. Jizba, G. Vitiello, Phys. Lett. A 287, 205 (2001).
M. Blasone, E. Celeghini, P. Jizba, G. Vitiello, Phys. Lett. A 310, 393 (2003).



The ground state |0(t)) for the closed system {z{,z,} is found to be
an SU(1,1) generalized (squeezed) coherent state.

It is a thermal state and its time evolution is controlled by the entropy
operator:

0(t)) = exp (—%SA(t)> exp (ATB)[0) = exp (—%SB(t)) exp (ATB)(0)

Si(t) and Sp(t) have the same formal expressions (with B and BT
replacing A and AT"):

Sa(t) = —{ATAlInsinh?(I't) — AAT Incosh?(It)} . (10)

Since A’s and B’s commute, § denotes either S, or Sp.

S IS the entropy for the dissipative system.



Time evolution controlled by § — breaking of time-reversal symmetry
— choice of a privileged direction in time evolution (time arrow).

T he breakdown of time-reversal symmetry characteristic of dissipation
IS manifest in the formation process of fractals;

in the case of the logarithmic spiral the breakdown of time-reversal
symmetry is associated with the chirality of the spiral: the indirect
(right-handed) spiral is the time-reversed, but distinct, image of the
direct (left-handed) spiral.

The Hamiltonian H turns out to be the fractal free energy for the co-
herent boson condensation process out of which the fractal is formed.



The time-evolution operator U/ (t) can be written as

U(t) = exp (— (a2~ al?) — 12 = 512)) ) |

in terms of a and b operators (related to A and B by a canonical trans-
formation). U(t¢) is the two mode squeezing generator with squeezing
parameter ( = —TI t.

|0(t)) is thus a squeezed state.
We can repeat the construction also for the Koch curve.

For simplicity the problem has been tackled within the framework of
quantum mechanics. The correct mathematical framework to study
quantum dissipation is the one of quantum field theory (QFT), where
one considers an infinite number of degrees of freedom.

This is also physically more realistic, because the realizations of the
logarithmic spiral (and in general of fractals) in the many cases it is
observed in nature involve an infinite number of elementary degrees
of freedom.



T he logarithmic spiral and its time-reversed double manifest them-
selves as macroscopic quantum systems.

Same conclusion holds for the Koch curve and other fractals.



We know that the quantum interference phase ¥ (of the Aharanov-
Bohm type) between two alternative paths P; and P, in the plane is
determined by the noncommutative deformation parameter ¢ and the
enclosed area A: 9 = A/qg°**.

In the (z1,25) plane, introduce for simplicity the index notation 4+ =1
and — = 2. The forward in time and backward in time velocities
v+ = z4+ are given by

1 1
UVt = . (p@ + E’Yzi) (11)
and they do not commute
.Y
U] = —i—= . 12
v, 0] = —i— (12)

**Sivasubramanian, S., Srivastava, Y.N., Vitiello, G., Widom, A., Phys. Lett. A
311, 97—-105 (2003)
Blasone, M., Jizba, P., Vitiello, G.: Quantum Field Theory and its macroscopic
manifestations. Imperial College Press, London (2011)



Define the conjugate position coordinates £+ = F(m/v)vs, then
1
[54—7&—] — 7’; ) (13)

which characterizes the noncommutative geometry in the plane (z4, z_).

T he quantum dissipative interference phase v associated with the two
paths P; and P> in the noncommutative plane is ¥ = A~, provided

2y F 2.

The “dissipative interference phase’” provides a relation between dis-
sipation and noncommutative geometry in the plane of the doubled
coordinates.



Remark: the noncommutative g-deformed Hopf algebra plays a rele-
vant role in the formalism of the algebra doubling.

The map A —+ A7 ® A> which duplicates the algebra is the Hopf co-
product map A - A®14+1 A.

The deformed coproduct maps Aaj, = a} ® ¢1/2 4+ ¢ /2@ a} (al are the
creation operators in the ¢g-deformed Hopf algebra) are noncommu-
tative and the g¢-deformation parameter is related to the coherent
condensate content of the state [0(t)).



Energy-momentum conservation in electrodynamics

In classical electrodynamics, as well as in quantum electrodynamics:

the conservation of the electromagnetic (em) energy-momentum ten-
sor THY

closed system {v, A*#}, made of the matter field ¢» and of the em gauge
field A~



However, the conservation arises from the compensation between the
matter part 7}, and the em part 7" of the total T/:

aMT#LV — GFOH/JQ (2)

OuTHY = —e F™ J, (3)

where J, denotes the current, e is the charge and as usual F®8 =
AP AY — 9 AB

no need to specify the boson or fermion nature of y(x).



Volume integration gives for »r = 0 the rate of changes in time of the
energy of the matter field and em field, &, and &, respectively:

For v =1:=1,2,3, integration over the volume gives

(‘9OP,?n —eFE'+e (v X B)i (4)

80P,7; = —eE'— e (v x B)" (5)

namely, the Lorentz forces F,, and F-, acting on two opposite charges
with same velocity v in the same electric and magnetic fields, E and
B, respectively.



Let, at least in some space-time region, the magnetic field B be a
constant vector, thus described by the vector potential

1
A=-Bxr

2
where r = (z1,x5,23). It iIs B=V x A, V-.-A =0.
Choose the reference frame so that B=V x A =—-B3 . Then, A3=0
and by using €1p = —e>1 =1, ¢; =0,

B
Ai — EEZ]:B] y ’i,j — 1, 2.

The third component, i = 3, of (v x B) vanishes.

Assume also that E is given by the gradient of the harmonic potential

® =L (212 —22?) =P — Py , E=-V®; and E3 = 0.

We may thus limit our analysis to the : = 1,2 components.



Then let : =1 and put B =~/e. We have

mx1 + yxo + kxy =0

m, v and k£ are time independent quantities. For : = 2:

mxo + yx1 + kxo =0

T he Hamiltonian is

1 1
H=H)—Hy=—(p1 —e1A1)° +e1P1 — —(po + e0A2)? + exd>
2m 2m

In the least energy state (where H = 0, Hi = H»>) the respective
contributions to the energy compensate each other.

One of the oscillators may be considered to represent the em field In
which the other one is embedded and vice-versa.



In summary, the system of damped/amplified oscillators provides, un-
der the conditions specified above, a representation of the content of
Maxwell equations and the associated conservation laws.



The quantum field theory framework

the damped/amplified oscillators have a quantum representation in
terms of squeezed SU(1,1) coherent states.

Thus, the isomorphism between SU(1,1) coherent states and electro-
dynamics is also established.



Conclusions and outlook

A link is established between electrodynamics, self-similarity and co-
herent states in QFT.

In space-time regions where the magnetic field may be approximated
to be constant and the electric field is derivable from a harmonic
potential, an isomorphism has been recognized to exist between elec-
trodynamics and a set of damped and amplified oscillators, which are
represented by SU(1,1) squeezed (g-deformed) coherent states and
are in turn isomorph to fractal self-similar structures.

Dissipation plays a central role and is at the origin of noncommutative
geometry in the plane and is described by the deformed Hopf algebra.



Fractal-like structures with self-similarity properties appear as macro-
scopic quantum systems generated by coherent SU(1,1) quantum con-
densation processes at the microscopic level.

Fractals emerge out of a process of morphogenesis (forms) as the
macroscopic manifestation of the dissipative, coherent quantum dy-
namics at the elementary level.



An integrated vision of Nature based on the dynamics of coherence
thus emerges.

It includes also the sector of high energy physics, with the coherent
condensate structure of the vacuum and the recent discovery of the
Higgs boson belongs to such a picture.

Nature appears to be shaped by coherence, rather than being orga-
nized in isolated compartments, in collections of isolated systems.

The dynamics of coherence appears to be the primordial origin of
codes. These are lifted from the (syntactic) level of pure information
(a la Shannon) to the (semantic) level of meanings, expressions of
coherent dynamical processes.

Codes, (including the genetic DNA code) appear to be the vehicles
through which coherence propagate and manifest itself.
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Figure 11. Evidence is summarized showing that the mesoscopic background activity conforms to
scale-free, low-dimensional noise [Freeman et al., 2008]. Engagement of the brain in perception and other
goal-directed behaviors is accompanied by departures from randomness upon the emergence of order (A),
as shown by comparing PSD in sleep, which conforms to black noise, vs. PSD in an aroused state showing
excess power in the theta (3 —7 Hz) and gamma (25 — 100 Hz) ranges. B. The distributions of time
intervals between null spikes of brown noise and sleep ECoG are superimposed. C,D. The distributions
are compared of log;, analytic power from noise and ECoG. Hypothetically the threshold for triggering
a phase transition is 10~* down from modal analytic power. From [Freeman, O’Nuillain and Rodriguez,
2008 and Freeman and Zhai, 2009]
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Quantum Field Theoryand s
Macroscopic Manifestations

Boson Condensation, Ordered Patterns
and Topological Defects

MaSSImO Blasone, Petr leba Et Gluseppe Vltlello

Imperial College Press




	VitielloLucidiAirs2014_Praga2015.pdf
	VitielloLucidiAirs2014
	VitielloFirenze2012

	VitielloLucidiAirs2014_Praga2015.pdf
	VitielloLucidiAirs2014
	VitielloFirenze2012




