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History of Field-Theoretic Renormalization

Renormalization as a technique to deal with infinities:

1938 Kramers “The interaction between charged particles and the radiation

field”

1947 Bethe “The electromagnetic shift of energy levels”

1946-49 Tomonaga, Schwinger, Feynman, Dyson.

The renormalization group (RG):

1951 Stueckelberg & Petermann “The normalization group in quantum

theory”

1955 Bogoliubov & Shirkov “Charge renormalization group in quantum field

theory”



History of Field-Theoretic Renormalization

The RG as the physics of scales:

1954 Gell-Mann & Low “Quantum electrodynamics at small distances”

1970 Callan “Broken scale invariance in scalar field theory”

1970 Symanzik “Small distance behavior in field theory and power counting”

The RG as a bridge between (nonrenormalizable) theories:

1966 Kadanoff “Scaling laws for Ising models near TC”

1971 Wilson “Renormalization group and critical phenomena. 1.

Renormalization group and the Kadanoff scaling picture”

1972 Wegner “Corrections to scaling laws”



Kadanoff’s Spin-Blocking

Statistical spin system (e.g. Ising model)

Z = Trse
−βH(s)

Take a block of k spins and assign a new spin to the block

T : (s1, . . . , sk) −→ s ′



Kadanoff’s Spin-Blocking

Statistical spin system (e.g. Ising model)

Z = Trse
−βH(s)

Take a block of k spins and assign a new spin to the block

T : (s1, . . . , sk) −→ s ′

Define the dynamics of blocks

e−H
′(s′) = Trs

∏
blocks

T (s ′; si ) e
−βH(s)

Spin-blocking must not change observables∑
s′

T (s ′; si ) = 1 ←→ Trse
−βH(s) = Trs′e

−βH′(s′)



Kadanoff’s Spin-Blocking

The lattice spacing decreases of a factor k

The number of degrees of freedom decreases: N ′ = Ne−kd

d being the dimension of the lattice

In the thermodynamic limit

Trse
−βH(s) =

(
Trs′e

−βH(s′)
) N

N′

and for Helmoltz free energy

F (H ′) = ekdF (H)



Scaling at Second-Order Phase Transitions

Assume there is a fixed-point solution H ′∗ = H∗

Linearize and diagonalize the infinitesimal transformation δk around the
fixed point (

H∗ +
∑
i

µiOi

)′
= H∗ +

∑
i

µi (1 + θiδk)Oi

For a finite k (
H∗ +

∑
i

µiOi

)′
= H∗ +

∑
i

µie
θikOi

Widom’s scaling hypothesis follows

F (µi ) = e−kdF (µie
θik)



Scaling at Second-Order Phase Transitions

The operators Oi are called

I relevant, θi > 0

I irrelevant, θi < 0

I marginal, θi = 0

If µi = 0 for all relevant operators, the system is at criticality
and the k →∞ limit hits the fixed point

Normally the number of relevant operators is small!

At a second-order transition there two relevant operators

O0 = 1, θ0 = d

OT = ?, θT = 1/ν



Scaling at Second-Order Phase Transitions

Denoting

(1− T/Tc) = τ = µT

2− α = d/θT

e−kd = |τ |2−α

∆i = θi/θT

the free energy reads

F = µ0 + |τ |2−αf ±sing

(
µi |τ |−∆i

)
µ0 is the regular part of the free energy, while

f ±sing(. . . ) = F (µ0 = 0, µT = ±1, . . . )



Wilson’s Differential Formulation

Statistical field theory (Wick-rotated QFT) with a UV-cutoff Λ

Z =

∫
[dφ] e−SΛ[φ]

Take a ”block” of Fourier modes φ>(p), p ∈ [Λ′,Λ]

φ(p) −→ φ<(p) + φ>(p)

[0,Λ] −→ [0,Λ′] + [Λ′,Λ]

Define the dynamics of φ<

e−SΛ′ [φ<] =

∫ [
dφ>

]
e−SΛ[φ<+φ>]

Decimation does not change observables∫
[dφ] e−SΛ[φ] =

∫ [
dφ<

]
e−SΛ′ [φ<]



The RG is a Change of Variables

The continuous map SΛ −→ SΛ′ is an RG transformation.

Its generator is a change of parametrization of degrees of freedom.

Its fixed points, in the Λ→∞/0 limit, govern criticality, which defines
scaling.

Scaling is universal. Given a certain scaling, one can group interactions
into relevant and irrelevant.

Knowing the scaling, one can adapt the change of degrees of freedom to
minimize the irrelevant interactions.



Effective Field Theories and the RG

Consider the example of QCD.

At high energy QCD is a free-field-theory of massless gluons and quarks.

At low energy QCD is the free-field-theory of massive hadrons and
mesons.

The two RG fixed points have different scaling properties
(different numbers of relevant parameters).

Effective descriptions in the two regimes have different degrees of
freedom.

Observables are independent of the description we choose:
the two theories must match at intermediate energy scales!

The map between effective theories is the RG.



History of the Exact RG

1970 Wilson presents the first exact RG equation at the Irvine Conference



Wilson Exact RG Equation



Wilson Exact RG Equation

“The formal discussion of consequences of the renormalization group
works best if one has a differential form of the renormalization group
transformation.”

“A longer range possibility is that one will be able to develop
approximate forms of the transformation which can be integrated
numerically; if so, one might be able to solve problems which cannot be
solved any other way.”

“These equations are very complicated so they will not be discussed in
great detail.”



Wegner-Houghton Exact RG Equation



Perturbative Solution of the Exact RG

“Here a renormalization-group equation is derived by eliminating the
Fourier components of the order parameter in an infinitesimally small
shell in k space.”

“To demonstrate the usefulness of our equation, we consider
(a) the expansion around dimensionality 4 for the n-vector model and
rederive critical exponents to order ε and η to order ε2,
(b) the limit n =∞ of the n-vector model.”



History of the Functional RG



One Loop Effective Potential



One Loop Effective Potential



Wilson’s Speculation

“A longer range possibility is that one will be able to develop
approximate forms of the transformation which can be integrated
numerically; if so, one might be able to solve problems which cannot be
solved any other way.”



Local Potential Approximation

Local Potential Approximation (LPA)

Beginning of functional truncations of exact RG equations



Local Potential Approximation

Upon projection on vanishing momenta the ERGE becomes a PDE

“To solve (1) [this equation], the Hamiltonian can be expanded in terms
of any complete set of functions; the expansion functions should be
chosen to simplify the problem under consideration. ”

“[...] the eigenfunctions of (1) when (1) is linearized about the Gaussian
fixed point, H = 0”, (here Laguerre polynomials)

Scaling-Fields Expansion (Wegner 1972)

“If H is expanded in powers of x , the resulting equations, while not
appropriate for general ε-analysis, are essentially triangular”



History of the Exact RG

So far either ε-expansion or n→∞

Beyond perturbation theory?



Numerical Methods Coming

Functional, exact, but not continuous (discrete RG steps)



The Beginnings of the Derivative Expansion



First Nonperturbative Applications



First Example of Truncation-Induced Problems

“The parameter A denotes the arbitrary normalization of the kinetic
energy term in the Hamiltonian”



The Beginnings of the 1PI Exact RG



Towards Precision



Towards Precision

Convergence studies for truncation strategies



The derivative expansion: systematics and O(∂4)



Perturbative Renormalizability



Perturbative Renormalizability

1988 Wieczerkowski “Symanzik’s Improved Actions From the Viewpoint of

the Renormalization Group”

1990 Keller, Kopper, Salmhofer “Small distance behavior in field theory and

power counting”

1991 Keller, Kopper “Perturbative renormalization of QED via flow

equations”

“for suitable renormalization conditions [...] the violation of the Ward
identity goes to zero as Λ0 →∞”

1992 Bonini, D’Attanasio, Marchesini “Perturbative renormalization and

infrared finiteness in the Wilson renormalization group: the massless scalar

case” Exact RG equation for the 1PI effective action!



1PI Exact RG Equation



The Vertex Expansion



The Wetterich Story: Continuous Spin Blocking



The Wetterich Story: One-Loop RG Improvement
Apr 1990 Wetterich “ Quadratic Renormalization of the Average Potential

and the Naturalness of Quadratic Mass Relations for the Top Quark”

Aug 1991 Wetterich “The Average action for scalar fields near phase

transitions”

Feb 1992 Wetterich, Bornholdt, “Selforganizing criticality, large anomalous

mass dimension and the gauge hierarchy problem”

Mar 1992 Wetterich, Reuter, “Average action for the Higgs model with

Abelian gauge symmetry”

Apr 1992 Wetterich, Tetradis, “Scale dependence of the average potential

around the maximum in φ4 theories”

Jul 1992 Wetterich, Tetradis, “The high temperature phase transition for φ4

theories”

Dec 1992 Wetterich, Bornholdt, “Average action for models with fermions”



One-Loop RG Improvement is Exact!

Same as Bonini et al., Morris, Ellwanger.

Almost the same as Nicoll&Chang



The Lesson To Be Learned

Exact + As Simple As Possible = One Loop!

BUT: the action must be the most general one

Take a one loop formula with a mass-like regulator k2

Γm[φ] = S [φ] +
1

2
Tr log

(
S (2)[φ] + k2

)
As in the Callan-Symanzik RG, consider k as the RG scale
and compute the beta-functional by ∂t = k∂k

∂tΓk [φ] =
1

2
Tr

[(
S (2)[φ] + k2

)−1

∂tk
2

]
and identify as usual bare couplings (S) with running ones (Γ)

The same holds for a momentum-dependent mass k → Rk(p2)



The Lesson To Be Learned

∂tΓk [φ] =
1

2
Tr

[(
Γ(2)[φ] + Rk

)−1

∂tRk

]



Proof of Exactness

eWk [J] =

∫
[dϕ]e−S[ϕ]− 1

2ϕ·Rk ·ϕ+J·ϕ

Wilsonian integration shell-by-shell

(essentially) Polchinski equation

−∂tWk [J] =
1

2
Tr

[
δ2Wk

δJδJ
∂tRk

]
+

1

2
Tr

[
δWk

δJ
∂tRk

δWk

δJ

]



Proof of Exactness

eWk [J] =

∫
[dϕ]e−S[ϕ]− 1

2ϕ·Rk ·ϕ+J·ϕ

(essentially) Polchinski equation

−∂tWk [J] =
1

2
Tr

[
δ2Wk

δJδJ
∂tRk

]
+

1

2
Tr

[
δWk

δJ
∂tRk

δWk

δJ

]
Legendre transform

Γk [φ] = ext
J

(J · φ−Wk [J])− 1

2
φ · Rk · φ

flow of the average effective action

∂tΓk [φ] =
1

2
Tr

[(
Γ(2)[φ] + Rk

)−1

∂tRk

]



User’s Manual

1. Decide what you want to compute

2. Choose the truncation strategy accordingly

I Scaling Field Expansion

I Derivative Expansion

I Vertex Expansion

I ...

3. Study the dependence of universal predictions on Rk and optimize

4. Estimate truncation errors



Personal Selection of Applications: Particle Theory

1993 Reuter, Wetterich, “Running gauge coupling in three-dimensions and

the electroweak phase transition ”

1994 Halpern, Huang, “Fixed point structure of scalar fields”

2001 Codello, Percacci, “Fixed Points of Nonlinear Sigma Models in d > 2”

2002 Gies, “Running coupling in Yang-Mills theory: A flow equation study”

2002 Gies, Jaeckel, Wetterich, “Towards a renormalizable standard model

without fundamental Higgs scalar”

2010 Gies, Scherer, “Asymptotic safety of simple Yukawa systems”

2013 Gies, Gneiting, Sondenheimer, “Higgs Mass Bounds from

Renormalization Flow for a simple Yukawa model ”



Personal Selection of Applications: Quantum Gravity

1996 Reuter, “Nonperturbative evolution equation for quantum gravity”

2000 Bonanno, Reuter, “Renormalization group improved black hole

space-times”

2003 Percacci, Perini, “Asymptotic safety of gravity coupled to matter ”

2008 Codello, Percacci, Rahmede, “Ultraviolet properties of f (R)-gravity”

2009 Weinberg, “Asymptotically safe inflation”

2009 Shaposhnikov, Wetterich, “Asymptotic safety of gravity and the Higgs

boson mass”



Personal Selection of Applications: IR QCD

1996 Jungnickel, Wetterich, “Effective action for the chiral quark-meson

model”

2001 Gies, Wetterich, “Renormalization flow of bound states”

2004 Pawlowski, Litim, von Smekal, “Infrared behavior and fixed points in

Landau gauge QCD”

2010 Braun, Gies, Pawlowski “Quark Confinement from Color Confinement”

2014 Tripolt, von Smekal, Wambach, “Flow equations for spectral functions

at finite external momenta”

2015 Mitter, Pawlowski, Strodthoff, “Chiral symmetry breaking in

continuum QCD”



And Much More

I All kinds of critical phenomena: disorder, long range, membranes

I Out-of-equilibrium: dissipation, transport, avalanches, turbolence

I Few/many body, closed/open systems: Efimov, cold atoms, nuclei

I Strongly interacting electrons and condensed matter: graphene,
superconductors, topological transitions

I Supersymmetric field theories

I Group field theories and matrix models

I Holography

I de Sitter (in)stability and QFT in curved spaces


